Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5149 (class class class)co 7409
1c1 11111 + caddc 11113 < clt 11248
2c2 12267 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-2 12275 |
This theorem is referenced by: 1lt3
12385 1lt4
12388 1lt6
12397 1lt7
12403 1lt8
12410 1lt9
12418 1ne2
12420 1le2
12421 halflt1
12430 nn0n0n1ge2b
12540 nn0ge2m1nn
12541 halfnz
12640 1lt10
12816 fztpval
13563 ige2m2fzo
13695 faclbnd5
14258 hashgt23el
14384 hashfun
14397 hashge2el2dif
14441 wrdlenge2n0
14502 ccat2s1p2
14580 s3fv1
14843 pfx2
14898 wwlktovf
14907 sqrt2gt1lt2
15221 ege2le3
16033 ene1
16153 mod2eq1n2dvds
16290 bits0o
16371 bitsfzolem
16375 bitsfzo
16376 bitsfi
16378 2prm
16629 4nprm
16632 iserodd
16768 dec2dvds
16996 dec5nprm
16999 dec2nprm
17000 2expltfac
17026 5prm
17042 6nprm
17043 7prm
17044 8nprm
17045 10nprm
17047 11prm
17048 13prm
17049 17prm
17050 19prm
17051 37prm
17054 83prm
17056 317prm
17059 631prm
17060 basendxltplusgndx
17226 grpstr
17229 grpbaseOLD
17232 grpplusgOLD
17234 rngstr
17243 lmodstr
17270 topgrpstr
17306 psgnunilem2
19363 isnzr2hash
20298 dyadss
25111 opnmbllem
25118 lhop1lem
25530 aaliou3lem8
25858 zetacvg
26519 lgamgulmlem4
26536 ppi1
26668 cht1
26669 chtrpcl
26679 ppiltx
26681 chtub
26715 chpval2
26721 mersenne
26730 perfectlem1
26732 perfectlem2
26733 bpos1
26786 bposlem1
26787 bposlem6
26792 bposlem7
26793 bposlem8
26794 lgseisenlem1
26878 2sqblem
26934 chebbnd1lem1
26972 chebbnd1lem3
26974 chebbnd1
26975 chtppilimlem1
26976 chtppilimlem2
26977 chtppilim
26978 chto1ub
26979 chebbnd2
26980 chto1lb
26981 mulog2sumlem2
27038 pntrmax
27067 pntrlog2bndlem2
27081 pntrlog2bndlem4
27083 pntpbnd1a
27088 pntibndlem3
27095 pntibnd
27096 pntlemb
27100 pntlemk
27109 pnt
27117 axlowdim
28219 lfgrnloop
28385 lfuhgr1v0e
28511 nbusgrvtxm1
28636 cusgrsizeindb1
28707 lfgrwlkprop
28944 usgr2pthlem
29020 uspgrn2crct
29062 clwlkclwwlklem2fv2
29249 clwwlkext2edg
29309 eupth2lem3lem4
29484 ex-mod
29702 9p10ne21
29723 cshw1s2
32124 drngidlhash
32552 fib1
33399 ballotlem2
33487 chtvalz
33641 hgt750lemd
33660 hgt750lem
33663 hgt750leme
33670 lfuhgr2
34109 subfacp1lem1
34170 subfacp1lem5
34175 knoppndvlem12
35399 knoppndvlem18
35405 relowlpssretop
36245 tan2h
36480 opnmbllem0
36524 heiborlem7
36685 lcmineqlem22
40915 3lexlogpow5ineq2
40920 3lexlogpow5ineq4
40921 3lexlogpow5ineq3
40922 3lexlogpow2ineq1
40923 3lexlogpow2ineq2
40924 3lexlogpow5ineq5
40925 aks4d1lem1
40927 dvrelog2b
40931 dvrelogpow2b
40933 aks4d1p1p3
40934 aks4d1p1p2
40935 aks4d1p1p4
40936 aks4d1p1p6
40938 aks4d1p1p7
40939 aks4d1p1p5
40940 aks4d1p1
40941 aks4d1p2
40942 aks4d1p3
40943 aks4d1p5
40945 aks4d1p6
40946 aks4d1p7d1
40947 aks4d1p7
40948 aks4d1p8
40952 aks4d1p9
40953 flt4lem7
41401 pellfundgt1
41621 stoweidlem13
44729 stoweidlem26
44742 wallispilem4
44784 wallispi
44786 wallispi2lem1
44787 wallispi2lem2
44788 wallispi2
44789 stirlinglem1
44790 dirkertrigeqlem1
44814 dirkercncflem1
44819 fouriersw
44947 etransclem23
44973 salexct2
45055 fmtnoge3
46198 fmtnof1
46203 fmtno4prm
46243 2pwp1prm
46257 127prm
46267 sfprmdvdsmersenne
46271 lighneallem2
46274 dfodd4
46327 perfectALTVlem1
46389 perfectALTVlem2
46390 nnsum4primesevenALTV
46469 cznnring
46854 pw2m1lepw2m1
47201 difmodm1lt
47208 rege1logbzge0
47245 logbpw2m1
47253 fllog2
47254 blenpw2m1
47265 nnpw2blen
47266 dignn0flhalflem1
47301 |