MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsca Structured version   Visualization version   GIF version

Theorem mplsca 20201
Description: The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplsca.p 𝑃 = (𝐼 mPoly 𝑅)
mplsca.i (𝜑𝐼𝑉)
mplsca.r (𝜑𝑅𝑊)
Assertion
Ref Expression
mplsca (𝜑𝑅 = (Scalar‘𝑃))

Proof of Theorem mplsca
StepHypRef Expression
1 eqid 2820 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplsca.i . . 3 (𝜑𝐼𝑉)
3 mplsca.r . . 3 (𝜑𝑅𝑊)
41, 2, 3psrsca 20145 . 2 (𝜑𝑅 = (Scalar‘(𝐼 mPwSer 𝑅)))
5 fvex 6659 . . 3 (Base‘𝑃) ∈ V
6 mplsca.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
7 eqid 2820 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
86, 1, 7mplval2 20187 . . . 4 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))
9 eqid 2820 . . . 4 (Scalar‘(𝐼 mPwSer 𝑅)) = (Scalar‘(𝐼 mPwSer 𝑅))
108, 9resssca 16629 . . 3 ((Base‘𝑃) ∈ V → (Scalar‘(𝐼 mPwSer 𝑅)) = (Scalar‘𝑃))
115, 10ax-mp 5 . 2 (Scalar‘(𝐼 mPwSer 𝑅)) = (Scalar‘𝑃)
124, 11syl6eq 2871 1 (𝜑𝑅 = (Scalar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3473  cfv 6331  (class class class)co 7133  Basecbs 16462  Scalarcsca 16547   mPwSer cmps 20107   mPoly cmpl 20109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-tset 16563  df-psr 20112  df-mpl 20114
This theorem is referenced by:  mpllvec  20209  mplcoe1  20222  mplbas2  20227  mplascl  20252  mplasclf  20253  subrgascl  20254  subrgasclcl  20255  mplmon2cl  20256  mplmon2mul  20257  mplind  20258  evlslem1  20271  mpfconst  20290  mpfind  20296  mhpvscacl  20317  mhplss  20318  ply1ascl  20402  pf1ind  20494  mdegvscale  24655  mdegvsca  24656  selvval2lem2  39245  selvval2lem4  39248
  Copyright terms: Public domain W3C validator