![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpl0 | Structured version Visualization version GIF version |
Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpl0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mpl0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mpl0.o | ⊢ 𝑂 = (0g‘𝑅) |
mpl0.z | ⊢ 0 = (0g‘𝑃) |
mpl0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mpl0.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Ref | Expression |
---|---|
mpl0 | ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpl0.z | . 2 ⊢ 0 = (0g‘𝑃) | |
2 | eqid 2737 | . . . . 5 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
3 | mpl0.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
4 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
5 | mpl0.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mpl0.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
7 | 2, 3, 4, 5, 6 | mplsubg 21280 | . . . 4 ⊢ (𝜑 → (Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅))) |
8 | 3, 2, 4 | mplval2 21274 | . . . . 5 ⊢ 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)) |
9 | eqid 2737 | . . . . 5 ⊢ (0g‘(𝐼 mPwSer 𝑅)) = (0g‘(𝐼 mPwSer 𝑅)) | |
10 | 8, 9 | subg0 18830 | . . . 4 ⊢ ((Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅)) → (0g‘(𝐼 mPwSer 𝑅)) = (0g‘𝑃)) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (0g‘𝑃)) |
12 | mpl0.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
13 | mpl0.o | . . . 4 ⊢ 𝑂 = (0g‘𝑅) | |
14 | 2, 5, 6, 12, 13, 9 | psr0 21240 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (𝐷 × {𝑂})) |
15 | 11, 14 | eqtr3d 2779 | . 2 ⊢ (𝜑 → (0g‘𝑃) = (𝐷 × {𝑂})) |
16 | 1, 15 | eqtrid 2789 | 1 ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3404 {csn 4571 × cxp 5605 ◡ccnv 5606 “ cima 5610 ‘cfv 6465 (class class class)co 7315 ↑m cmap 8663 Fincfn 8781 ℕcn 12046 ℕ0cn0 12306 Basecbs 16982 0gc0g 17220 Grpcgrp 18646 SubGrpcsubg 18818 mPwSer cmps 21179 mPoly cmpl 21181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-uz 12656 df-fz 13313 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-sca 17048 df-vsca 17049 df-tset 17051 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-minusg 18650 df-subg 18821 df-psr 21184 df-mpl 21186 |
This theorem is referenced by: mplcoe1 21310 evlslem2 21361 mhp0cl 21408 coe1z 21506 mdegldg 25303 mdeg0 25307 ply1nzb 25359 mhphf 40488 prjcrv0 40673 |
Copyright terms: Public domain | W3C validator |