MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpl0 Structured version   Visualization version   GIF version

Theorem mpl0 21212
Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mpl0.p 𝑃 = (𝐼 mPoly 𝑅)
mpl0.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mpl0.o 𝑂 = (0g𝑅)
mpl0.z 0 = (0g𝑃)
mpl0.i (𝜑𝐼𝑊)
mpl0.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mpl0 (𝜑0 = (𝐷 × {𝑂}))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑓)   𝑅(𝑓)   𝑂(𝑓)   𝑊(𝑓)   0 (𝑓)

Proof of Theorem mpl0
StepHypRef Expression
1 mpl0.z . 2 0 = (0g𝑃)
2 eqid 2738 . . . . 5 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
3 mpl0.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
4 eqid 2738 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
5 mpl0.i . . . . 5 (𝜑𝐼𝑊)
6 mpl0.r . . . . 5 (𝜑𝑅 ∈ Grp)
72, 3, 4, 5, 6mplsubg 21208 . . . 4 (𝜑 → (Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅)))
83, 2, 4mplval2 21202 . . . . 5 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))
9 eqid 2738 . . . . 5 (0g‘(𝐼 mPwSer 𝑅)) = (0g‘(𝐼 mPwSer 𝑅))
108, 9subg0 18761 . . . 4 ((Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅)) → (0g‘(𝐼 mPwSer 𝑅)) = (0g𝑃))
117, 10syl 17 . . 3 (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (0g𝑃))
12 mpl0.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 mpl0.o . . . 4 𝑂 = (0g𝑅)
142, 5, 6, 12, 13, 9psr0 21168 . . 3 (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (𝐷 × {𝑂}))
1511, 14eqtr3d 2780 . 2 (𝜑 → (0g𝑃) = (𝐷 × {𝑂}))
161, 15eqtrid 2790 1 (𝜑0 = (𝐷 × {𝑂}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  {csn 4561   × cxp 5587  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cn 11973  0cn0 12233  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  SubGrpcsubg 18749   mPwSer cmps 21107   mPoly cmpl 21109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-psr 21112  df-mpl 21114
This theorem is referenced by:  mplcoe1  21238  evlslem2  21289  mhp0cl  21336  coe1z  21434  mdegldg  25231  mdeg0  25235  ply1nzb  25287  mhphf  40285  prjcrv0  40470
  Copyright terms: Public domain W3C validator