MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpl0 Structured version   Visualization version   GIF version

Theorem mpl0 21966
Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mpl0.p 𝑃 = (𝐼 mPoly 𝑅)
mpl0.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mpl0.o 𝑂 = (0g𝑅)
mpl0.z 0 = (0g𝑃)
mpl0.i (𝜑𝐼𝑊)
mpl0.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mpl0 (𝜑0 = (𝐷 × {𝑂}))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑓)   𝑅(𝑓)   𝑂(𝑓)   𝑊(𝑓)   0 (𝑓)

Proof of Theorem mpl0
StepHypRef Expression
1 mpl0.z . 2 0 = (0g𝑃)
2 eqid 2735 . . . . 5 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
3 mpl0.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
4 eqid 2735 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
5 mpl0.i . . . . 5 (𝜑𝐼𝑊)
6 mpl0.r . . . . 5 (𝜑𝑅 ∈ Grp)
72, 3, 4, 5, 6mplsubg 21962 . . . 4 (𝜑 → (Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅)))
83, 2, 4mplval2 21956 . . . . 5 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))
9 eqid 2735 . . . . 5 (0g‘(𝐼 mPwSer 𝑅)) = (0g‘(𝐼 mPwSer 𝑅))
108, 9subg0 19115 . . . 4 ((Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅)) → (0g‘(𝐼 mPwSer 𝑅)) = (0g𝑃))
117, 10syl 17 . . 3 (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (0g𝑃))
12 mpl0.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 mpl0.o . . . 4 𝑂 = (0g𝑅)
142, 5, 6, 12, 13, 9psr0 21918 . . 3 (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (𝐷 × {𝑂}))
1511, 14eqtr3d 2772 . 2 (𝜑 → (0g𝑃) = (𝐷 × {𝑂}))
161, 15eqtrid 2782 1 (𝜑0 = (𝐷 × {𝑂}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  {csn 4601   × cxp 5652  ccnv 5653  cima 5657  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  cn 12240  0cn0 12501  Basecbs 17228  0gc0g 17453  Grpcgrp 18916  SubGrpcsubg 19103   mPwSer cmps 21864   mPoly cmpl 21866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-psr 21869  df-mpl 21871
This theorem is referenced by:  mplcoe1  21995  evlslem2  22037  mhp0cl  22084  coe1z  22200  mdegldg  26023  mdeg0  26027  ply1nzb  26080  selvvvval  42608  evlselv  42610  prjcrv0  42656
  Copyright terms: Public domain W3C validator