Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpllmod | Structured version Visualization version GIF version |
Description: The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015.) |
Ref | Expression |
---|---|
mplgrp.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
Ref | Expression |
---|---|
mpllmod | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
2 | simpl 483 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ 𝑉) | |
3 | simpr 485 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
4 | 1, 2, 3 | psrlmod 21159 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐼 mPwSer 𝑅) ∈ LMod) |
5 | mplgrp.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
6 | eqid 2738 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | 1, 5, 6, 2, 3 | mpllss 21198 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (Base‘𝑃) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) |
8 | 5, 1, 6 | mplval2 21191 | . . 3 ⊢ 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)) |
9 | eqid 2738 | . . 3 ⊢ (LSubSp‘(𝐼 mPwSer 𝑅)) = (LSubSp‘(𝐼 mPwSer 𝑅)) | |
10 | 8, 9 | lsslmod 20211 | . 2 ⊢ (((𝐼 mPwSer 𝑅) ∈ LMod ∧ (Base‘𝑃) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → 𝑃 ∈ LMod) |
11 | 4, 7, 10 | syl2anc 584 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6428 (class class class)co 7269 Basecbs 16901 Ringcrg 19772 LModclmod 20112 LSubSpclss 20182 mPwSer cmps 21096 mPoly cmpl 21098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-supp 7967 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-map 8606 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-fsupp 9118 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-3 12026 df-4 12027 df-5 12028 df-6 12029 df-7 12030 df-8 12031 df-9 12032 df-n0 12223 df-z 12309 df-uz 12572 df-fz 13229 df-struct 16837 df-sets 16854 df-slot 16872 df-ndx 16884 df-base 16902 df-ress 16931 df-plusg 16964 df-mulr 16965 df-sca 16967 df-vsca 16968 df-tset 16970 df-0g 17141 df-mgm 18315 df-sgrp 18364 df-mnd 18375 df-grp 18569 df-minusg 18570 df-sbg 18571 df-subg 18741 df-mgp 19710 df-ur 19727 df-ring 19774 df-lmod 20114 df-lss 20183 df-psr 21101 df-mpl 21103 |
This theorem is referenced by: mpllvec 21214 mplcoe1 21227 mplbas2 21232 mplasclf 21262 subrgasclcl 21264 mplmon2cl 21265 mpfconst 21300 mhppwdeg 21329 mhpvscacl 21333 mhplss 21334 ply1coe 21456 mdegvscale 25229 mdegvsca 25230 mplascl0 40257 |
Copyright terms: Public domain | W3C validator |