MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2 Structured version   Visualization version   GIF version

Theorem ovollb2 24853
Description: It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb 24843). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
ovollb2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))

Proof of Theorem ovollb2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝐴 ran ([,] ∘ 𝐹))
2 ovolficcss 24833 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
32adantr 481 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
41, 3sstrd 3954 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝐴 ⊆ ℝ)
5 ovolcl 24842 . . . . . 6 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
64, 5syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ∈ ℝ*)
76adantr 481 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ∈ ℝ*)
8 pnfge 13051 . . . 4 ((vol*‘𝐴) ∈ ℝ* → (vol*‘𝐴) ≤ +∞)
97, 8syl 17 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ≤ +∞)
10 simpr 485 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → sup(ran 𝑆, ℝ*, < ) = +∞)
119, 10breqtrrd 5133 . 2 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
12 eqid 2736 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
13 ovollb2.1 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
1412, 13ovolsf 24836 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1514adantr 481 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝑆:ℕ⟶(0[,)+∞))
1615frnd 6676 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ⊆ (0[,)+∞))
17 rge0ssre 13373 . . . . . 6 (0[,)+∞) ⊆ ℝ
1816, 17sstrdi 3956 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ⊆ ℝ)
19 1nn 12164 . . . . . . . 8 1 ∈ ℕ
2015fdmd 6679 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → dom 𝑆 = ℕ)
2119, 20eleqtrrid 2845 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 1 ∈ dom 𝑆)
2221ne0d 4295 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → dom 𝑆 ≠ ∅)
23 dm0rn0 5880 . . . . . . 7 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
2423necon3bii 2996 . . . . . 6 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
2522, 24sylib 217 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ≠ ∅)
26 supxrre2 13250 . . . . 5 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅) → (sup(ran 𝑆, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑆, ℝ*, < ) ≠ +∞))
2718, 25, 26syl2anc 584 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (sup(ran 𝑆, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑆, ℝ*, < ) ≠ +∞))
2827biimpar 478 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ≠ +∞) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
29 2fveq3 6847 . . . . . . . . 9 (𝑚 = 𝑛 → (1st ‘(𝐹𝑚)) = (1st ‘(𝐹𝑛)))
30 oveq2 7365 . . . . . . . . . 10 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
3130oveq2d 7373 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑥 / 2) / (2↑𝑚)) = ((𝑥 / 2) / (2↑𝑛)))
3229, 31oveq12d 7375 . . . . . . . 8 (𝑚 = 𝑛 → ((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))) = ((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))))
33 2fveq3 6847 . . . . . . . . 9 (𝑚 = 𝑛 → (2nd ‘(𝐹𝑚)) = (2nd ‘(𝐹𝑛)))
3433, 31oveq12d 7375 . . . . . . . 8 (𝑚 = 𝑛 → ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚))) = ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛))))
3532, 34opeq12d 4838 . . . . . . 7 (𝑚 = 𝑛 → ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩ = ⟨((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛)))⟩)
3635cbvmptv 5218 . . . . . 6 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛)))⟩)
37 eqid 2736 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩)))
38 simplll 773 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
39 simpllr 774 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ran ([,] ∘ 𝐹))
40 simpr 485 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
41 simplr 767 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4213, 36, 37, 38, 39, 40, 41ovollb2lem 24852 . . . . 5 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥))
4342ralrimiva 3143 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥))
44 xralrple 13124 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ((vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥)))
456, 44sylan 580 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ((vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥)))
4643, 45mpbird 256 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
4728, 46syldan 591 . 2 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ≠ +∞) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
4811, 47pm2.61dane 3032 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  cin 3909  wss 3910  c0 4282  cop 4592   cuni 4865   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  ran crn 5634  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  supcsup 9376  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  +crp 12915  [,)cico 13266  [,]cicc 13267  seqcseq 13906  cexp 13967  abscabs 15119  vol*covol 24826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-ovol 24828
This theorem is referenced by:  ovolctb  24854  ovolicc1  24880  ioombl1lem4  24925  uniiccvol  24944
  Copyright terms: Public domain W3C validator