MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2 Structured version   Visualization version   GIF version

Theorem ovollb2 25388
Description: It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb 25378). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
ovollb2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))

Proof of Theorem ovollb2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝐴 ran ([,] ∘ 𝐹))
2 ovolficcss 25368 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
32adantr 480 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
41, 3sstrd 3946 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝐴 ⊆ ℝ)
5 ovolcl 25377 . . . . . 6 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
64, 5syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ∈ ℝ*)
76adantr 480 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ∈ ℝ*)
8 pnfge 13032 . . . 4 ((vol*‘𝐴) ∈ ℝ* → (vol*‘𝐴) ≤ +∞)
97, 8syl 17 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ≤ +∞)
10 simpr 484 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → sup(ran 𝑆, ℝ*, < ) = +∞)
119, 10breqtrrd 5120 . 2 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
12 eqid 2729 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
13 ovollb2.1 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
1412, 13ovolsf 25371 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1514adantr 480 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝑆:ℕ⟶(0[,)+∞))
1615frnd 6660 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ⊆ (0[,)+∞))
17 rge0ssre 13359 . . . . . 6 (0[,)+∞) ⊆ ℝ
1816, 17sstrdi 3948 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ⊆ ℝ)
19 1nn 12139 . . . . . . . 8 1 ∈ ℕ
2015fdmd 6662 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → dom 𝑆 = ℕ)
2119, 20eleqtrrid 2835 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 1 ∈ dom 𝑆)
2221ne0d 4293 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → dom 𝑆 ≠ ∅)
23 dm0rn0 5867 . . . . . . 7 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
2423necon3bii 2977 . . . . . 6 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
2522, 24sylib 218 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ≠ ∅)
26 supxrre2 13233 . . . . 5 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅) → (sup(ran 𝑆, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑆, ℝ*, < ) ≠ +∞))
2718, 25, 26syl2anc 584 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (sup(ran 𝑆, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑆, ℝ*, < ) ≠ +∞))
2827biimpar 477 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ≠ +∞) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
29 2fveq3 6827 . . . . . . . . 9 (𝑚 = 𝑛 → (1st ‘(𝐹𝑚)) = (1st ‘(𝐹𝑛)))
30 oveq2 7357 . . . . . . . . . 10 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
3130oveq2d 7365 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑥 / 2) / (2↑𝑚)) = ((𝑥 / 2) / (2↑𝑛)))
3229, 31oveq12d 7367 . . . . . . . 8 (𝑚 = 𝑛 → ((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))) = ((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))))
33 2fveq3 6827 . . . . . . . . 9 (𝑚 = 𝑛 → (2nd ‘(𝐹𝑚)) = (2nd ‘(𝐹𝑛)))
3433, 31oveq12d 7367 . . . . . . . 8 (𝑚 = 𝑛 → ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚))) = ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛))))
3532, 34opeq12d 4832 . . . . . . 7 (𝑚 = 𝑛 → ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩ = ⟨((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛)))⟩)
3635cbvmptv 5196 . . . . . 6 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛)))⟩)
37 eqid 2729 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩)))
38 simplll 774 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
39 simpllr 775 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ran ([,] ∘ 𝐹))
40 simpr 484 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
41 simplr 768 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4213, 36, 37, 38, 39, 40, 41ovollb2lem 25387 . . . . 5 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥))
4342ralrimiva 3121 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥))
44 xralrple 13107 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ((vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥)))
456, 44sylan 580 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ((vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥)))
4643, 45mpbird 257 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
4728, 46syldan 591 . 2 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ≠ +∞) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
4811, 47pm2.61dane 3012 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3902  wss 3903  c0 4284  cop 4583   cuni 4858   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  supcsup 9330  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  +crp 12893  [,)cico 13250  [,]cicc 13251  seqcseq 13908  cexp 13968  abscabs 15141  vol*covol 25361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ovol 25363
This theorem is referenced by:  ovolctb  25389  ovolicc1  25415  ioombl1lem4  25460  uniiccvol  25479
  Copyright terms: Public domain W3C validator