Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rge0scvg Structured version   Visualization version   GIF version

Theorem rge0scvg 31613
Description: Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 16474. (Contributed by Thierry Arnoux, 28-Jul-2017.)
Assertion
Ref Expression
rge0scvg ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)

Proof of Theorem rge0scvg
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12477 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12208 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → 1 ∈ ℤ)
3 rge0ssre 13044 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4 fss 6562 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
53, 4mpan2 691 . . . . . 6 (𝐹:ℕ⟶(0[,)+∞) → 𝐹:ℕ⟶ℝ)
65ffvelrnda 6904 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
71, 2, 6serfre 13605 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → seq1( + , 𝐹):ℕ⟶ℝ)
87frnd 6553 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ⊆ ℝ)
98adantr 484 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ⊆ ℝ)
10 1nn 11841 . . . . 5 1 ∈ ℕ
11 fdm 6554 . . . . 5 (seq1( + , 𝐹):ℕ⟶ℝ → dom seq1( + , 𝐹) = ℕ)
1210, 11eleqtrrid 2845 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → 1 ∈ dom seq1( + , 𝐹))
13 ne0i 4249 . . . . 5 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
14 dm0rn0 5794 . . . . . 6 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
1514necon3bii 2993 . . . . 5 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
1613, 15sylib 221 . . . 4 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
177, 12, 163syl 18 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ≠ ∅)
1817adantr 484 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ≠ ∅)
19 1zzd 12208 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
20 climdm 15115 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2120biimpi 219 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2221adantl 485 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
237adantr 484 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
2423ffvelrnda 6904 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
251, 19, 22, 24climrecl 15144 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
26 simpr 488 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2722adantr 484 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
28 simplll 775 . . . . . . 7 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
29 ffvelrn 6902 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (0[,)+∞))
303, 29sseldi 3899 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
3128, 30sylancom 591 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
32 elrege0 13042 . . . . . . . . . 10 ((𝐹𝑗) ∈ (0[,)+∞) ↔ ((𝐹𝑗) ∈ ℝ ∧ 0 ≤ (𝐹𝑗)))
3332simprbi 500 . . . . . . . . 9 ((𝐹𝑗) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑗))
3429, 33syl 17 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3534adantlr 715 . . . . . . 7 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3635adantlr 715 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
371, 26, 27, 31, 36climserle 15226 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
3837ralrimiva 3105 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
39 brralrspcev 5113 . . . 4 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
4025, 38, 39syl2anc 587 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
41 ffn 6545 . . . . . 6 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
42 breq1 5056 . . . . . . 7 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4342ralrn 6907 . . . . . 6 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
447, 41, 433syl 18 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4544rexbidv 3216 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4645adantr 484 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4740, 46mpbird 260 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
48 suprcl 11792 . 2 ((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
499, 18, 47, 48syl3anc 1373 1 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110  wne 2940  wral 3061  wrex 3062  wss 3866  c0 4237   class class class wbr 5053  dom cdm 5551  ran crn 5552   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  supcsup 9056  cr 10728  0cc0 10729  1c1 10730   + caddc 10732  +∞cpnf 10864   < clt 10867  cle 10868  cn 11830  [,)cico 12937  seqcseq 13574  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-fz 13096  df-fl 13367  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator