Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rge0scvg Structured version   Visualization version   GIF version

Theorem rge0scvg 33939
Description: Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 16892. (Contributed by Thierry Arnoux, 28-Jul-2017.)
Assertion
Ref Expression
rge0scvg ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)

Proof of Theorem rge0scvg
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12564 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → 1 ∈ ℤ)
3 rge0ssre 13417 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4 fss 6704 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
53, 4mpan2 691 . . . . . 6 (𝐹:ℕ⟶(0[,)+∞) → 𝐹:ℕ⟶ℝ)
65ffvelcdmda 7056 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
71, 2, 6serfre 13996 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → seq1( + , 𝐹):ℕ⟶ℝ)
87frnd 6696 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ⊆ ℝ)
98adantr 480 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ⊆ ℝ)
10 1nn 12197 . . . . 5 1 ∈ ℕ
11 fdm 6697 . . . . 5 (seq1( + , 𝐹):ℕ⟶ℝ → dom seq1( + , 𝐹) = ℕ)
1210, 11eleqtrrid 2835 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → 1 ∈ dom seq1( + , 𝐹))
13 ne0i 4304 . . . . 5 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
14 dm0rn0 5888 . . . . . 6 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
1514necon3bii 2977 . . . . 5 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
1613, 15sylib 218 . . . 4 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
177, 12, 163syl 18 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ≠ ∅)
1817adantr 480 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ≠ ∅)
19 1zzd 12564 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
20 climdm 15520 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2120biimpi 216 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2221adantl 481 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
237adantr 480 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
2423ffvelcdmda 7056 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
251, 19, 22, 24climrecl 15549 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
26 simpr 484 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2722adantr 480 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
28 simplll 774 . . . . . . 7 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
29 ffvelcdm 7053 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (0[,)+∞))
303, 29sselid 3944 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
3128, 30sylancom 588 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
32 elrege0 13415 . . . . . . . . . 10 ((𝐹𝑗) ∈ (0[,)+∞) ↔ ((𝐹𝑗) ∈ ℝ ∧ 0 ≤ (𝐹𝑗)))
3332simprbi 496 . . . . . . . . 9 ((𝐹𝑗) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑗))
3429, 33syl 17 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3534adantlr 715 . . . . . . 7 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3635adantlr 715 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
371, 26, 27, 31, 36climserle 15629 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
3837ralrimiva 3125 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
39 brralrspcev 5167 . . . 4 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
4025, 38, 39syl2anc 584 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
41 ffn 6688 . . . . . 6 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
42 breq1 5110 . . . . . . 7 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4342ralrn 7060 . . . . . 6 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
447, 41, 433syl 18 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4544rexbidv 3157 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4645adantr 480 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4740, 46mpbird 257 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
48 suprcl 12143 . 2 ((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
499, 18, 47, 48syl3anc 1373 1 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   class class class wbr 5107  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205   < clt 11208  cle 11209  cn 12186  [,)cico 13308  seqcseq 13966  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator