| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modexp2m1d | Structured version Visualization version GIF version | ||
| Description: The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| modexp2m1d.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| modexp2m1d.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| modexp2m1d.g | ⊢ (𝜑 → 1 < 𝐸) |
| modexp2m1d.m | ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) |
| Ref | Expression |
|---|---|
| modexp2m1d | ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modexp2m1d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zcnd 12705 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 2 | sqvald 14164 | . . . 4 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
| 4 | 3 | oveq1d 7427 | . . 3 ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = ((𝐴 · 𝐴) mod 𝐸)) |
| 5 | neg1z 12635 | . . . . 5 ⊢ -1 ∈ ℤ | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → -1 ∈ ℤ) |
| 7 | modexp2m1d.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 8 | modexp2m1d.m | . . . 4 ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) | |
| 9 | 1, 6, 1, 6, 7, 8, 8 | modmul12d 13947 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝐴) mod 𝐸) = ((-1 · -1) mod 𝐸)) |
| 10 | 4, 9 | eqtrd 2769 | . 2 ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = ((-1 · -1) mod 𝐸)) |
| 11 | neg1mulneg1e1 12460 | . . . . 5 ⊢ (-1 · -1) = 1 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → (-1 · -1) = 1) |
| 13 | 12 | oveq1d 7427 | . . 3 ⊢ (𝜑 → ((-1 · -1) mod 𝐸) = (1 mod 𝐸)) |
| 14 | 7 | rpred 13058 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 15 | modexp2m1d.g | . . . 4 ⊢ (𝜑 → 1 < 𝐸) | |
| 16 | 1mod 13924 | . . . 4 ⊢ ((𝐸 ∈ ℝ ∧ 1 < 𝐸) → (1 mod 𝐸) = 1) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1 mod 𝐸) = 1) |
| 18 | 13, 17 | eqtrd 2769 | . 2 ⊢ (𝜑 → ((-1 · -1) mod 𝐸) = 1) |
| 19 | 10, 18 | eqtrd 2769 | 1 ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7412 ℝcr 11135 1c1 11137 · cmul 11141 < clt 11276 -cneg 11474 2c2 12302 ℤcz 12595 ℝ+crp 13015 mod cmo 13890 ↑cexp 14083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-fl 13813 df-mod 13891 df-seq 14024 df-exp 14084 |
| This theorem is referenced by: proththd 47535 |
| Copyright terms: Public domain | W3C validator |