Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odpmco Structured version   Visualization version   GIF version

Theorem odpmco 33050
Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
odpmco.s 𝑆 = (SymGrp‘𝐷)
odpmco.b 𝐵 = (Base‘𝑆)
odpmco.a 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
odpmco ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)

Proof of Theorem odpmco
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐷 ∈ Fin)
2 simp2 1137 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵𝐴))
32eldifad 3943 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋𝐵)
4 simp3 1138 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵𝐴))
54eldifad 3943 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌𝐵)
6 odpmco.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
7 odpmco.b . . . . . 6 𝐵 = (Base‘𝑆)
8 eqid 2734 . . . . . 6 (+g𝑆) = (+g𝑆)
96, 7, 8symgov 19370 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
103, 5, 9syl2anc 584 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
116, 7, 8symgcl 19371 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
123, 5, 11syl2anc 584 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
1310, 12eqeltrrd 2834 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐵)
14 eqid 2734 . . . . . 6 (pmSgn‘𝐷) = (pmSgn‘𝐷)
156, 14, 7psgnco 21556 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋𝐵𝑌𝐵) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
161, 3, 5, 15syl3anc 1372 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
17 odpmco.a . . . . . . . . . 10 𝐴 = (pmEven‘𝐷)
1817a1i 11 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐴 = (pmEven‘𝐷))
1918difeq2d 4106 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝐵𝐴) = (𝐵 ∖ (pmEven‘𝐷)))
202, 19eleqtrd 2835 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷)))
216, 7, 14psgnodpm 21561 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1)
221, 20, 21syl2anc 584 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1)
234, 19eleqtrd 2835 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷)))
246, 7, 14psgnodpm 21561 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1)
251, 23, 24syl2anc 584 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1)
2622, 25oveq12d 7431 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1))
27 neg1mulneg1e1 12461 . . . . 5 (-1 · -1) = 1
2826, 27eqtrdi 2785 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1)
2916, 28eqtrd 2769 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)
306, 7, 14psgnevpmb 21560 . . . 4 (𝐷 ∈ Fin → ((𝑋𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)))
3130biimpar 477 . . 3 ((𝐷 ∈ Fin ∧ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
321, 13, 29, 31syl12anc 836 . 2 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
3332, 17eleqtrrdi 2844 1 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cdif 3928  ccom 5669  cfv 6541  (class class class)co 7413  Fincfn 8967  1c1 11138   · cmul 11142  -cneg 11475  Basecbs 17230  +gcplusg 17274  SymGrpcsymg 19355  pmSgncpsgn 19476  pmEvencevpm 19477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1511  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-splice 14771  df-reverse 14780  df-s2 14870  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-efmnd 18852  df-grp 18924  df-minusg 18925  df-subg 19111  df-ghm 19201  df-gim 19247  df-oppg 19334  df-symg 19356  df-pmtr 19429  df-psgn 19478  df-evpm 19479  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-dvr 20370  df-drng 20700  df-cnfld 21328
This theorem is referenced by:  cyc3conja  33121
  Copyright terms: Public domain W3C validator