Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odpmco Structured version   Visualization version   GIF version

Theorem odpmco 30730
Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
odpmco.s 𝑆 = (SymGrp‘𝐷)
odpmco.b 𝐵 = (Base‘𝑆)
odpmco.a 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
odpmco ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)

Proof of Theorem odpmco
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐷 ∈ Fin)
2 simp2 1133 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵𝐴))
32eldifad 3948 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋𝐵)
4 simp3 1134 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵𝐴))
54eldifad 3948 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌𝐵)
6 odpmco.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
7 odpmco.b . . . . . 6 𝐵 = (Base‘𝑆)
8 eqid 2821 . . . . . 6 (+g𝑆) = (+g𝑆)
96, 7, 8symgov 18512 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
103, 5, 9syl2anc 586 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
116, 7, 8symgcl 18513 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
123, 5, 11syl2anc 586 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
1310, 12eqeltrrd 2914 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐵)
14 eqid 2821 . . . . . 6 (pmSgn‘𝐷) = (pmSgn‘𝐷)
156, 14, 7psgnco 20727 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋𝐵𝑌𝐵) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
161, 3, 5, 15syl3anc 1367 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
17 odpmco.a . . . . . . . . . 10 𝐴 = (pmEven‘𝐷)
1817a1i 11 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐴 = (pmEven‘𝐷))
1918difeq2d 4099 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝐵𝐴) = (𝐵 ∖ (pmEven‘𝐷)))
202, 19eleqtrd 2915 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷)))
216, 7, 14psgnodpm 20732 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1)
221, 20, 21syl2anc 586 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1)
234, 19eleqtrd 2915 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷)))
246, 7, 14psgnodpm 20732 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1)
251, 23, 24syl2anc 586 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1)
2622, 25oveq12d 7174 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1))
27 neg1mulneg1e1 11851 . . . . 5 (-1 · -1) = 1
2826, 27syl6eq 2872 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1)
2916, 28eqtrd 2856 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)
306, 7, 14psgnevpmb 20731 . . . 4 (𝐷 ∈ Fin → ((𝑋𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)))
3130biimpar 480 . . 3 ((𝐷 ∈ Fin ∧ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
321, 13, 29, 31syl12anc 834 . 2 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
3332, 17eleqtrrdi 2924 1 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cdif 3933  ccom 5559  cfv 6355  (class class class)co 7156  Fincfn 8509  1c1 10538   · cmul 10542  -cneg 10871  Basecbs 16483  +gcplusg 16565  SymGrpcsymg 18495  pmSgncpsgn 18617  pmEvencevpm 18618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-reverse 14121  df-s2 14210  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-subg 18276  df-ghm 18356  df-gim 18399  df-oppg 18474  df-symg 18496  df-pmtr 18570  df-psgn 18619  df-evpm 18620  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-cnfld 20546
This theorem is referenced by:  cyc3conja  30799
  Copyright terms: Public domain W3C validator