| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > odpmco | Structured version Visualization version GIF version | ||
| Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| odpmco.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| odpmco.b | ⊢ 𝐵 = (Base‘𝑆) |
| odpmco.a | ⊢ 𝐴 = (pmEven‘𝐷) |
| Ref | Expression |
|---|---|
| odpmco | ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐷 ∈ Fin) | |
| 2 | simp2 1137 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ 𝐴)) | |
| 3 | 2 | eldifad 3909 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ 𝐵) |
| 4 | simp3 1138 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ 𝐴)) | |
| 5 | 4 | eldifad 3909 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ 𝐵) |
| 6 | odpmco.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 7 | odpmco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 9 | 6, 7, 8 | symgov 19291 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
| 10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
| 11 | 6, 7, 8 | symgcl 19292 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
| 12 | 3, 5, 11 | syl2anc 584 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
| 13 | 10, 12 | eqeltrrd 2832 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐵) |
| 14 | eqid 2731 | . . . . . 6 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
| 15 | 6, 14, 7 | psgnco 21515 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
| 16 | 1, 3, 5, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
| 17 | odpmco.a | . . . . . . . . . 10 ⊢ 𝐴 = (pmEven‘𝐷) | |
| 18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐴 = (pmEven‘𝐷)) |
| 19 | 18 | difeq2d 4071 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝐵 ∖ 𝐴) = (𝐵 ∖ (pmEven‘𝐷))) |
| 20 | 2, 19 | eleqtrd 2833 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
| 21 | 6, 7, 14 | psgnodpm 21520 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1) |
| 22 | 1, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1) |
| 23 | 4, 19 | eleqtrd 2833 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
| 24 | 6, 7, 14 | psgnodpm 21520 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1) |
| 25 | 1, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1) |
| 26 | 22, 25 | oveq12d 7359 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1)) |
| 27 | neg1mulneg1e1 12328 | . . . . 5 ⊢ (-1 · -1) = 1 | |
| 28 | 26, 27 | eqtrdi 2782 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1) |
| 29 | 16, 28 | eqtrd 2766 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1) |
| 30 | 6, 7, 14 | psgnevpmb 21519 | . . . 4 ⊢ (𝐷 ∈ Fin → ((𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1))) |
| 31 | 30 | biimpar 477 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
| 32 | 1, 13, 29, 31 | syl12anc 836 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
| 33 | 32, 17 | eleqtrrdi 2842 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∘ ccom 5615 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 1c1 11002 · cmul 11006 -cneg 11340 Basecbs 17115 +gcplusg 17156 SymGrpcsymg 19276 pmSgncpsgn 19396 pmEvencevpm 19397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-splice 14652 df-reverse 14661 df-s2 14750 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-0g 17340 df-gsum 17341 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-subg 19031 df-ghm 19120 df-gim 19166 df-oppg 19253 df-symg 19277 df-pmtr 19349 df-psgn 19398 df-evpm 19399 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-drng 20641 df-cnfld 21287 |
| This theorem is referenced by: cyc3conja 33118 |
| Copyright terms: Public domain | W3C validator |