Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > odpmco | Structured version Visualization version GIF version |
Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
Ref | Expression |
---|---|
odpmco.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
odpmco.b | ⊢ 𝐵 = (Base‘𝑆) |
odpmco.a | ⊢ 𝐴 = (pmEven‘𝐷) |
Ref | Expression |
---|---|
odpmco | ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐷 ∈ Fin) | |
2 | simp2 1137 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ 𝐴)) | |
3 | 2 | eldifad 3904 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ 𝐵) |
4 | simp3 1138 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ 𝐴)) | |
5 | 4 | eldifad 3904 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ 𝐵) |
6 | odpmco.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
7 | odpmco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
8 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
9 | 6, 7, 8 | symgov 19036 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
10 | 3, 5, 9 | syl2anc 585 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
11 | 6, 7, 8 | symgcl 19037 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
12 | 3, 5, 11 | syl2anc 585 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
13 | 10, 12 | eqeltrrd 2838 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐵) |
14 | eqid 2736 | . . . . . 6 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
15 | 6, 14, 7 | psgnco 20833 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
16 | 1, 3, 5, 15 | syl3anc 1371 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
17 | odpmco.a | . . . . . . . . . 10 ⊢ 𝐴 = (pmEven‘𝐷) | |
18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐴 = (pmEven‘𝐷)) |
19 | 18 | difeq2d 4063 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝐵 ∖ 𝐴) = (𝐵 ∖ (pmEven‘𝐷))) |
20 | 2, 19 | eleqtrd 2839 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
21 | 6, 7, 14 | psgnodpm 20838 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1) |
22 | 1, 20, 21 | syl2anc 585 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1) |
23 | 4, 19 | eleqtrd 2839 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
24 | 6, 7, 14 | psgnodpm 20838 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1) |
25 | 1, 23, 24 | syl2anc 585 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1) |
26 | 22, 25 | oveq12d 7325 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1)) |
27 | neg1mulneg1e1 12232 | . . . . 5 ⊢ (-1 · -1) = 1 | |
28 | 26, 27 | eqtrdi 2792 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1) |
29 | 16, 28 | eqtrd 2776 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1) |
30 | 6, 7, 14 | psgnevpmb 20837 | . . . 4 ⊢ (𝐷 ∈ Fin → ((𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1))) |
31 | 30 | biimpar 479 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
32 | 1, 13, 29, 31 | syl12anc 835 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
33 | 32, 17 | eleqtrrdi 2848 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∖ cdif 3889 ∘ ccom 5604 ‘cfv 6458 (class class class)co 7307 Fincfn 8764 1c1 10918 · cmul 10922 -cneg 11252 Basecbs 16957 +gcplusg 17007 SymGrpcsymg 19019 pmSgncpsgn 19142 pmEvencevpm 19143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-xor 1508 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-xnn0 12352 df-z 12366 df-dec 12484 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-word 14263 df-lsw 14311 df-concat 14319 df-s1 14346 df-substr 14399 df-pfx 14429 df-splice 14508 df-reverse 14517 df-s2 14606 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-0g 17197 df-gsum 17198 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-efmnd 18553 df-grp 18625 df-minusg 18626 df-subg 18797 df-ghm 18877 df-gim 18920 df-oppg 18995 df-symg 19020 df-pmtr 19095 df-psgn 19144 df-evpm 19145 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-ring 19830 df-cring 19831 df-oppr 19907 df-dvdsr 19928 df-unit 19929 df-invr 19959 df-dvr 19970 df-drng 20038 df-cnfld 20643 |
This theorem is referenced by: cyc3conja 31469 |
Copyright terms: Public domain | W3C validator |