| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > odpmco | Structured version Visualization version GIF version | ||
| Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| odpmco.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| odpmco.b | ⊢ 𝐵 = (Base‘𝑆) |
| odpmco.a | ⊢ 𝐴 = (pmEven‘𝐷) |
| Ref | Expression |
|---|---|
| odpmco | ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐷 ∈ Fin) | |
| 2 | simp2 1137 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ 𝐴)) | |
| 3 | 2 | eldifad 3926 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ 𝐵) |
| 4 | simp3 1138 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ 𝐴)) | |
| 5 | 4 | eldifad 3926 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ 𝐵) |
| 6 | odpmco.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 7 | odpmco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 9 | 6, 7, 8 | symgov 19314 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
| 10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
| 11 | 6, 7, 8 | symgcl 19315 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
| 12 | 3, 5, 11 | syl2anc 584 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
| 13 | 10, 12 | eqeltrrd 2829 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐵) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
| 15 | 6, 14, 7 | psgnco 21492 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
| 16 | 1, 3, 5, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
| 17 | odpmco.a | . . . . . . . . . 10 ⊢ 𝐴 = (pmEven‘𝐷) | |
| 18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐴 = (pmEven‘𝐷)) |
| 19 | 18 | difeq2d 4089 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝐵 ∖ 𝐴) = (𝐵 ∖ (pmEven‘𝐷))) |
| 20 | 2, 19 | eleqtrd 2830 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
| 21 | 6, 7, 14 | psgnodpm 21497 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1) |
| 22 | 1, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1) |
| 23 | 4, 19 | eleqtrd 2830 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
| 24 | 6, 7, 14 | psgnodpm 21497 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1) |
| 25 | 1, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1) |
| 26 | 22, 25 | oveq12d 7405 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1)) |
| 27 | neg1mulneg1e1 12394 | . . . . 5 ⊢ (-1 · -1) = 1 | |
| 28 | 26, 27 | eqtrdi 2780 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1) |
| 29 | 16, 28 | eqtrd 2764 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1) |
| 30 | 6, 7, 14 | psgnevpmb 21496 | . . . 4 ⊢ (𝐷 ∈ Fin → ((𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1))) |
| 31 | 30 | biimpar 477 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
| 32 | 1, 13, 29, 31 | syl12anc 836 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
| 33 | 32, 17 | eleqtrrdi 2839 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 1c1 11069 · cmul 11073 -cneg 11406 Basecbs 17179 +gcplusg 17220 SymGrpcsymg 19299 pmSgncpsgn 19419 pmEvencevpm 19420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-subg 19055 df-ghm 19145 df-gim 19191 df-oppg 19278 df-symg 19300 df-pmtr 19372 df-psgn 19421 df-evpm 19422 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-drng 20640 df-cnfld 21265 |
| This theorem is referenced by: cyc3conja 33114 |
| Copyright terms: Public domain | W3C validator |