| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > odpmco | Structured version Visualization version GIF version | ||
| Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| odpmco.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| odpmco.b | ⊢ 𝐵 = (Base‘𝑆) |
| odpmco.a | ⊢ 𝐴 = (pmEven‘𝐷) |
| Ref | Expression |
|---|---|
| odpmco | ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐷 ∈ Fin) | |
| 2 | simp2 1137 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ 𝐴)) | |
| 3 | 2 | eldifad 3938 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ 𝐵) |
| 4 | simp3 1138 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ 𝐴)) | |
| 5 | 4 | eldifad 3938 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ 𝐵) |
| 6 | odpmco.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 7 | odpmco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | eqid 2735 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 9 | 6, 7, 8 | symgov 19365 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
| 10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
| 11 | 6, 7, 8 | symgcl 19366 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
| 12 | 3, 5, 11 | syl2anc 584 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
| 13 | 10, 12 | eqeltrrd 2835 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐵) |
| 14 | eqid 2735 | . . . . . 6 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
| 15 | 6, 14, 7 | psgnco 21543 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
| 16 | 1, 3, 5, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
| 17 | odpmco.a | . . . . . . . . . 10 ⊢ 𝐴 = (pmEven‘𝐷) | |
| 18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐴 = (pmEven‘𝐷)) |
| 19 | 18 | difeq2d 4101 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝐵 ∖ 𝐴) = (𝐵 ∖ (pmEven‘𝐷))) |
| 20 | 2, 19 | eleqtrd 2836 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
| 21 | 6, 7, 14 | psgnodpm 21548 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1) |
| 22 | 1, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1) |
| 23 | 4, 19 | eleqtrd 2836 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
| 24 | 6, 7, 14 | psgnodpm 21548 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1) |
| 25 | 1, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1) |
| 26 | 22, 25 | oveq12d 7423 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1)) |
| 27 | neg1mulneg1e1 12453 | . . . . 5 ⊢ (-1 · -1) = 1 | |
| 28 | 26, 27 | eqtrdi 2786 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1) |
| 29 | 16, 28 | eqtrd 2770 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1) |
| 30 | 6, 7, 14 | psgnevpmb 21547 | . . . 4 ⊢ (𝐷 ∈ Fin → ((𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1))) |
| 31 | 30 | biimpar 477 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
| 32 | 1, 13, 29, 31 | syl12anc 836 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
| 33 | 32, 17 | eleqtrrdi 2845 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 1c1 11130 · cmul 11134 -cneg 11467 Basecbs 17228 +gcplusg 17271 SymGrpcsymg 19350 pmSgncpsgn 19470 pmEvencevpm 19471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 df-splice 14768 df-reverse 14777 df-s2 14867 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-gsum 17456 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-efmnd 18847 df-grp 18919 df-minusg 18920 df-subg 19106 df-ghm 19196 df-gim 19242 df-oppg 19329 df-symg 19351 df-pmtr 19423 df-psgn 19472 df-evpm 19473 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-drng 20691 df-cnfld 21316 |
| This theorem is referenced by: cyc3conja 33168 |
| Copyright terms: Public domain | W3C validator |