Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > odpmco | Structured version Visualization version GIF version |
Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
Ref | Expression |
---|---|
odpmco.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
odpmco.b | ⊢ 𝐵 = (Base‘𝑆) |
odpmco.a | ⊢ 𝐴 = (pmEven‘𝐷) |
Ref | Expression |
---|---|
odpmco | ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐷 ∈ Fin) | |
2 | simp2 1137 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ 𝐴)) | |
3 | 2 | eldifad 3913 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ 𝐵) |
4 | simp3 1138 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ 𝐴)) | |
5 | 4 | eldifad 3913 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ 𝐵) |
6 | odpmco.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
7 | odpmco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
8 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
9 | 6, 7, 8 | symgov 19087 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
10 | 3, 5, 9 | syl2anc 585 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) = (𝑋 ∘ 𝑌)) |
11 | 6, 7, 8 | symgcl 19088 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
12 | 3, 5, 11 | syl2anc 585 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋(+g‘𝑆)𝑌) ∈ 𝐵) |
13 | 10, 12 | eqeltrrd 2839 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐵) |
14 | eqid 2737 | . . . . . 6 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
15 | 6, 14, 7 | psgnco 20893 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
16 | 1, 3, 5, 15 | syl3anc 1371 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌))) |
17 | odpmco.a | . . . . . . . . . 10 ⊢ 𝐴 = (pmEven‘𝐷) | |
18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝐴 = (pmEven‘𝐷)) |
19 | 18 | difeq2d 4073 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝐵 ∖ 𝐴) = (𝐵 ∖ (pmEven‘𝐷))) |
20 | 2, 19 | eleqtrd 2840 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
21 | 6, 7, 14 | psgnodpm 20898 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1) |
22 | 1, 20, 21 | syl2anc 585 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1) |
23 | 4, 19 | eleqtrd 2840 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) |
24 | 6, 7, 14 | psgnodpm 20898 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1) |
25 | 1, 23, 24 | syl2anc 585 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1) |
26 | 22, 25 | oveq12d 7359 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1)) |
27 | neg1mulneg1e1 12291 | . . . . 5 ⊢ (-1 · -1) = 1 | |
28 | 26, 27 | eqtrdi 2793 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1) |
29 | 16, 28 | eqtrd 2777 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1) |
30 | 6, 7, 14 | psgnevpmb 20897 | . . . 4 ⊢ (𝐷 ∈ Fin → ((𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1))) |
31 | 30 | biimpar 479 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ ((𝑋 ∘ 𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋 ∘ 𝑌)) = 1)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
32 | 1, 13, 29, 31 | syl12anc 835 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ (pmEven‘𝐷)) |
33 | 32, 17 | eleqtrrdi 2849 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ 𝐴) ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → (𝑋 ∘ 𝑌) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∖ cdif 3898 ∘ ccom 5628 ‘cfv 6483 (class class class)co 7341 Fincfn 8808 1c1 10977 · cmul 10981 -cneg 11311 Basecbs 17009 +gcplusg 17059 SymGrpcsymg 19070 pmSgncpsgn 19193 pmEvencevpm 19194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-tpos 8116 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-xnn0 12411 df-z 12425 df-dec 12543 df-uz 12688 df-rp 12836 df-fz 13345 df-fzo 13488 df-seq 13827 df-exp 13888 df-hash 14150 df-word 14322 df-lsw 14370 df-concat 14378 df-s1 14403 df-substr 14452 df-pfx 14482 df-splice 14561 df-reverse 14570 df-s2 14660 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-0g 17249 df-gsum 17250 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-submnd 18528 df-efmnd 18604 df-grp 18676 df-minusg 18677 df-subg 18848 df-ghm 18928 df-gim 18971 df-oppg 19046 df-symg 19071 df-pmtr 19146 df-psgn 19195 df-evpm 19196 df-cmn 19483 df-abl 19484 df-mgp 19815 df-ur 19832 df-ring 19879 df-cring 19880 df-oppr 19956 df-dvdsr 19977 df-unit 19978 df-invr 20008 df-dvr 20019 df-drng 20094 df-cnfld 20703 |
This theorem is referenced by: cyc3conja 31709 |
Copyright terms: Public domain | W3C validator |