Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odpmco Structured version   Visualization version   GIF version

Theorem odpmco 33043
Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
odpmco.s 𝑆 = (SymGrp‘𝐷)
odpmco.b 𝐵 = (Base‘𝑆)
odpmco.a 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
odpmco ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)

Proof of Theorem odpmco
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐷 ∈ Fin)
2 simp2 1137 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵𝐴))
32eldifad 3926 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋𝐵)
4 simp3 1138 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵𝐴))
54eldifad 3926 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌𝐵)
6 odpmco.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
7 odpmco.b . . . . . 6 𝐵 = (Base‘𝑆)
8 eqid 2729 . . . . . 6 (+g𝑆) = (+g𝑆)
96, 7, 8symgov 19314 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
103, 5, 9syl2anc 584 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
116, 7, 8symgcl 19315 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
123, 5, 11syl2anc 584 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
1310, 12eqeltrrd 2829 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐵)
14 eqid 2729 . . . . . 6 (pmSgn‘𝐷) = (pmSgn‘𝐷)
156, 14, 7psgnco 21492 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋𝐵𝑌𝐵) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
161, 3, 5, 15syl3anc 1373 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
17 odpmco.a . . . . . . . . . 10 𝐴 = (pmEven‘𝐷)
1817a1i 11 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐴 = (pmEven‘𝐷))
1918difeq2d 4089 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝐵𝐴) = (𝐵 ∖ (pmEven‘𝐷)))
202, 19eleqtrd 2830 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷)))
216, 7, 14psgnodpm 21497 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1)
221, 20, 21syl2anc 584 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1)
234, 19eleqtrd 2830 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷)))
246, 7, 14psgnodpm 21497 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1)
251, 23, 24syl2anc 584 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1)
2622, 25oveq12d 7405 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1))
27 neg1mulneg1e1 12394 . . . . 5 (-1 · -1) = 1
2826, 27eqtrdi 2780 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1)
2916, 28eqtrd 2764 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)
306, 7, 14psgnevpmb 21496 . . . 4 (𝐷 ∈ Fin → ((𝑋𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)))
3130biimpar 477 . . 3 ((𝐷 ∈ Fin ∧ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
321, 13, 29, 31syl12anc 836 . 2 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
3332, 17eleqtrrdi 2839 1 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  ccom 5642  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069   · cmul 11073  -cneg 11406  Basecbs 17179  +gcplusg 17220  SymGrpcsymg 19299  pmSgncpsgn 19419  pmEvencevpm 19420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145  df-gim 19191  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421  df-evpm 19422  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-drng 20640  df-cnfld 21265
This theorem is referenced by:  cyc3conja  33114
  Copyright terms: Public domain W3C validator