Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odpmco Structured version   Visualization version   GIF version

Theorem odpmco 32941
Description: The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
odpmco.s 𝑆 = (SymGrp‘𝐷)
odpmco.b 𝐵 = (Base‘𝑆)
odpmco.a 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
odpmco ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)

Proof of Theorem odpmco
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐷 ∈ Fin)
2 simp2 1134 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵𝐴))
32eldifad 3958 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋𝐵)
4 simp3 1135 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵𝐴))
54eldifad 3958 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌𝐵)
6 odpmco.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
7 odpmco.b . . . . . 6 𝐵 = (Base‘𝑆)
8 eqid 2725 . . . . . 6 (+g𝑆) = (+g𝑆)
96, 7, 8symgov 19376 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
103, 5, 9syl2anc 582 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) = (𝑋𝑌))
116, 7, 8symgcl 19377 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
123, 5, 11syl2anc 582 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋(+g𝑆)𝑌) ∈ 𝐵)
1310, 12eqeltrrd 2826 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐵)
14 eqid 2725 . . . . . 6 (pmSgn‘𝐷) = (pmSgn‘𝐷)
156, 14, 7psgnco 21571 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋𝐵𝑌𝐵) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
161, 3, 5, 15syl3anc 1368 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)))
17 odpmco.a . . . . . . . . . 10 𝐴 = (pmEven‘𝐷)
1817a1i 11 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝐴 = (pmEven‘𝐷))
1918difeq2d 4120 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝐵𝐴) = (𝐵 ∖ (pmEven‘𝐷)))
202, 19eleqtrd 2827 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷)))
216, 7, 14psgnodpm 21576 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑋) = -1)
221, 20, 21syl2anc 582 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑋) = -1)
234, 19eleqtrd 2827 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷)))
246, 7, 14psgnodpm 21576 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑌 ∈ (𝐵 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑌) = -1)
251, 23, 24syl2anc 582 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘𝑌) = -1)
2622, 25oveq12d 7441 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = (-1 · -1))
27 neg1mulneg1e1 12472 . . . . 5 (-1 · -1) = 1
2826, 27eqtrdi 2781 . . . 4 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (((pmSgn‘𝐷)‘𝑋) · ((pmSgn‘𝐷)‘𝑌)) = 1)
2916, 28eqtrd 2765 . . 3 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)
306, 7, 14psgnevpmb 21575 . . . 4 (𝐷 ∈ Fin → ((𝑋𝑌) ∈ (pmEven‘𝐷) ↔ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)))
3130biimpar 476 . . 3 ((𝐷 ∈ Fin ∧ ((𝑋𝑌) ∈ 𝐵 ∧ ((pmSgn‘𝐷)‘(𝑋𝑌)) = 1)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
321, 13, 29, 31syl12anc 835 . 2 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ (pmEven‘𝐷))
3332, 17eleqtrrdi 2836 1 ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐵𝐴) ∧ 𝑌 ∈ (𝐵𝐴)) → (𝑋𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cdif 3943  ccom 5685  cfv 6553  (class class class)co 7423  Fincfn 8973  1c1 11155   · cmul 11159  -cneg 11491  Basecbs 17208  +gcplusg 17261  SymGrpcsymg 19359  pmSgncpsgn 19482  pmEvencevpm 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-addf 11233  ax-mulf 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-tpos 8240  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-card 9978  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-xnn0 12592  df-z 12606  df-dec 12725  df-uz 12870  df-rp 13024  df-fz 13534  df-fzo 13677  df-seq 14017  df-exp 14077  df-hash 14343  df-word 14518  df-lsw 14566  df-concat 14574  df-s1 14599  df-substr 14644  df-pfx 14674  df-splice 14753  df-reverse 14762  df-s2 14852  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-0g 17451  df-gsum 17452  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-efmnd 18854  df-grp 18926  df-minusg 18927  df-subg 19112  df-ghm 19202  df-gim 19248  df-oppg 19335  df-symg 19360  df-pmtr 19435  df-psgn 19484  df-evpm 19485  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-cring 20214  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-invr 20365  df-dvr 20378  df-drng 20666  df-cnfld 21336
This theorem is referenced by:  cyc3conja  33012
  Copyright terms: Public domain W3C validator