| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmoge0 | Structured version Visualization version GIF version | ||
| Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| Ref | Expression |
|---|---|
| nmoge0 | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrege0 13422 | . . . . . 6 ⊢ (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟)) | |
| 2 | 1 | simprbi 496 | . . . . 5 ⊢ (𝑟 ∈ (0[,)+∞) → 0 ≤ 𝑟) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → 0 ≤ 𝑟) |
| 4 | 3 | a1d 25 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)) |
| 5 | 4 | ralrimiva 3126 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)) |
| 6 | 0xr 11228 | . . 3 ⊢ 0 ∈ ℝ* | |
| 7 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 8 | eqid 2730 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | eqid 2730 | . . . 4 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
| 10 | eqid 2730 | . . . 4 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 11 | 7, 8, 9, 10 | nmogelb 24611 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 0 ∈ ℝ*) → (0 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))) |
| 12 | 6, 11 | mpan2 691 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (0 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))) |
| 13 | 5, 12 | mpbird 257 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 · cmul 11080 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 [,)cico 13315 Basecbs 17186 GrpHom cghm 19151 normcnm 24471 NrmGrpcngp 24472 normOp cnmo 24600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-ico 13319 df-nmo 24603 |
| This theorem is referenced by: isnghm3 24620 bddnghm 24621 nmoi 24623 nmoix 24624 nmo0 24630 nmoco 24632 nmotri 24634 nmoid 24637 nghmcn 24640 nmoleub2lem 25021 |
| Copyright terms: Public domain | W3C validator |