![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmoge0 | Structured version Visualization version GIF version |
Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
Ref | Expression |
---|---|
nmoge0 | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrege0 13490 | . . . . . 6 ⊢ (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟)) | |
2 | 1 | simprbi 496 | . . . . 5 ⊢ (𝑟 ∈ (0[,)+∞) → 0 ≤ 𝑟) |
3 | 2 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → 0 ≤ 𝑟) |
4 | 3 | a1d 25 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)) |
5 | 4 | ralrimiva 3143 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)) |
6 | 0xr 11305 | . . 3 ⊢ 0 ∈ ℝ* | |
7 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
8 | eqid 2734 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | eqid 2734 | . . . 4 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
10 | eqid 2734 | . . . 4 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
11 | 7, 8, 9, 10 | nmogelb 24752 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 0 ∈ ℝ*) → (0 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))) |
12 | 6, 11 | mpan2 691 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (0 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))) |
13 | 5, 12 | mpbird 257 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 · cmul 11157 +∞cpnf 11289 ℝ*cxr 11291 ≤ cle 11293 [,)cico 13385 Basecbs 17244 GrpHom cghm 19242 normcnm 24604 NrmGrpcngp 24605 normOp cnmo 24741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-ico 13389 df-nmo 24744 |
This theorem is referenced by: isnghm3 24761 bddnghm 24762 nmoi 24764 nmoix 24765 nmo0 24771 nmoco 24773 nmotri 24775 nmoid 24778 nghmcn 24781 nmoleub2lem 25160 |
Copyright terms: Public domain | W3C validator |