MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoge0 Structured version   Visualization version   GIF version

Theorem nmoge0 23791
Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmoge0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))

Proof of Theorem nmoge0
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrege0 13115 . . . . . 6 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
21simprbi 496 . . . . 5 (𝑟 ∈ (0[,)+∞) → 0 ≤ 𝑟)
32adantl 481 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → 0 ≤ 𝑟)
43a1d 25 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))
54ralrimiva 3107 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))
6 0xr 10953 . . 3 0 ∈ ℝ*
7 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
8 eqid 2738 . . . 4 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2738 . . . 4 (norm‘𝑆) = (norm‘𝑆)
10 eqid 2738 . . . 4 (norm‘𝑇) = (norm‘𝑇)
117, 8, 9, 10nmogelb 23786 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 0 ∈ ℝ*) → (0 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)))
126, 11mpan2 687 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (0 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)))
135, 12mpbird 256 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  *cxr 10939  cle 10941  [,)cico 13010  Basecbs 16840   GrpHom cghm 18746  normcnm 23638  NrmGrpcngp 23639   normOp cnmo 23775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ico 13014  df-nmo 23778
This theorem is referenced by:  isnghm3  23795  bddnghm  23796  nmoi  23798  nmoix  23799  nmo0  23805  nmoco  23807  nmotri  23809  nmoid  23812  nghmcn  23815  nmoleub2lem  24183
  Copyright terms: Public domain W3C validator