MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoge0 Structured version   Visualization version   GIF version

Theorem nmoge0 24763
Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmoge0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))

Proof of Theorem nmoge0
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrege0 13514 . . . . . 6 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
21simprbi 496 . . . . 5 (𝑟 ∈ (0[,)+∞) → 0 ≤ 𝑟)
32adantl 481 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → 0 ≤ 𝑟)
43a1d 25 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))
54ralrimiva 3152 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))
6 0xr 11337 . . 3 0 ∈ ℝ*
7 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
8 eqid 2740 . . . 4 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2740 . . . 4 (norm‘𝑆) = (norm‘𝑆)
10 eqid 2740 . . . 4 (norm‘𝑇) = (norm‘𝑇)
117, 8, 9, 10nmogelb 24758 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 0 ∈ ℝ*) → (0 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)))
126, 11mpan2 690 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (0 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)))
135, 12mpbird 257 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  +∞cpnf 11321  *cxr 11323  cle 11325  [,)cico 13409  Basecbs 17258   GrpHom cghm 19252  normcnm 24610  NrmGrpcngp 24611   normOp cnmo 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ico 13413  df-nmo 24750
This theorem is referenced by:  isnghm3  24767  bddnghm  24768  nmoi  24770  nmoix  24771  nmo0  24777  nmoco  24779  nmotri  24781  nmoid  24784  nghmcn  24787  nmoleub2lem  25166
  Copyright terms: Public domain W3C validator