![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version |
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0rei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 12557 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 4005 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℝcr 11183 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-n0 12554 |
This theorem is referenced by: nn0le2xi 12607 nn0lele2xi 12608 numlt 12783 numltc 12784 decle 12792 decleh 12793 nn0le2msqi 14316 nn0opthlem2 14318 nn0opthi 14319 faclbnd4lem1 14342 hashunlei 14474 hashsslei 14475 fsumcube 16108 divalglem5 16445 prmreclem3 16965 prmreclem5 16967 modxai 17115 modsubi 17119 prmlem2 17167 slotsbhcdif 17474 slotsbhcdifOLD 17475 cnfldfunALTOLDOLD 21416 psdmul 22193 dscmet 24606 tnglemOLD 24675 log2ublem1 27007 log2ub 27010 log2le1 27011 birthday 27015 ppiublem1 27264 ppiub 27266 bpos1lem 27344 bpos1 27345 bpos 27355 vdegp1bi 29573 9p10ne21 30502 dp20u 32842 rpdp2cl 32846 dp2lt10 32848 dp2lt 32849 dp2ltsuc 32850 dp2ltc 32851 dpmul100 32861 dp3mul10 32862 dpmul1000 32863 dpgti 32870 dpadd2 32874 dpadd 32875 dpadd3 32876 dpmul 32877 dpmul4 32878 hgt750lemd 34625 hgt750lem 34628 hgt750leme 34635 tgoldbachgnn 34636 resqrtvalex 43607 imsqrtvalex 43608 fmtno4prmfac 47446 31prm 47471 evengpoap3 47673 ackval42 48430 prstcocvalOLD 48739 |
Copyright terms: Public domain | W3C validator |