![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version |
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0rei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 12528 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3992 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℝcr 11152 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-n0 12525 |
This theorem is referenced by: nn0lele2xi 12580 numlt 12756 numltc 12757 decle 12765 decleh 12766 nn0le2msqi 14303 nn0opthlem2 14305 nn0opthi 14306 faclbnd4lem1 14329 hashunlei 14461 hashsslei 14462 fsumcube 16093 divalglem5 16431 prmreclem3 16952 prmreclem5 16954 modxai 17102 modsubi 17106 prmlem2 17154 slotsbhcdif 17461 slotsbhcdifOLD 17462 cnfldfunALTOLDOLD 21411 psdmul 22188 dscmet 24601 tnglemOLD 24670 log2ublem1 27004 log2ub 27007 log2le1 27008 birthday 27012 ppiublem1 27261 ppiub 27263 bpos1lem 27341 bpos1 27342 bpos 27352 vdegp1bi 29570 9p10ne21 30499 dp20u 32845 rpdp2cl 32849 dp2lt10 32851 dp2lt 32852 dp2ltsuc 32853 dp2ltc 32854 dpmul100 32864 dp3mul10 32865 dpmul1000 32866 dpgti 32873 dpadd2 32877 dpadd 32878 dpadd3 32879 dpmul 32880 dpmul4 32881 hgt750lemd 34642 hgt750lem 34645 hgt750leme 34652 tgoldbachgnn 34653 resqrtvalex 43635 imsqrtvalex 43636 fmtno4prmfac 47497 31prm 47522 evengpoap3 47724 ackval42 48546 prstcocvalOLD 48873 |
Copyright terms: Public domain | W3C validator |