| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0rei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 12388 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3932 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11008 ℕ0cn0 12384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-n0 12385 |
| This theorem is referenced by: nn0lele2xi 12440 numlt 12616 numltc 12617 decle 12625 decleh 12626 nn0le2msqi 14174 nn0opthlem2 14176 nn0opthi 14177 faclbnd4lem1 14200 hashunlei 14332 hashsslei 14333 fsumcube 15967 divalglem5 16308 prmreclem3 16830 prmreclem5 16832 modxai 16980 modsubi 16984 prmlem2 17031 slotsbhcdif 17319 psdmul 22051 dscmet 24458 log2ublem1 26854 log2ub 26857 log2le1 26858 birthday 26862 ppiublem1 27111 ppiub 27113 bpos1lem 27191 bpos1 27192 bpos 27202 vdegp1bi 29483 9p10ne21 30414 dp20u 32818 rpdp2cl 32822 dp2lt10 32824 dp2lt 32825 dp2ltsuc 32826 dp2ltc 32827 dpmul100 32837 dp3mul10 32838 dpmul1000 32839 dpgti 32846 dpadd2 32850 dpadd 32851 dpadd3 32852 dpmul 32853 dpmul4 32854 hgt750lemd 34616 hgt750lem 34619 hgt750leme 34626 tgoldbachgnn 34627 resqrtvalex 43622 imsqrtvalex 43623 fmtno4prmfac 47560 31prm 47585 evengpoap3 47787 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |