Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version |
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0rei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 11943 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3891 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ℝcr 10579 ℕ0cn0 11939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-i2m1 10648 ax-1ne0 10649 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-nn 11680 df-n0 11940 |
This theorem is referenced by: nn0le2xi 11993 nn0lele2xi 11994 numlt 12167 numltc 12168 decle 12176 decleh 12177 nn0le2msqi 13682 nn0opthlem2 13684 nn0opthi 13685 faclbnd4lem1 13708 hashunlei 13841 hashsslei 13842 fsumcube 15467 divalglem5 15803 prmreclem3 16314 prmreclem5 16316 modxai 16464 modsubi 16468 prmlem2 16516 slotsbhcdif 16756 cnfldfun 20183 dscmet 23279 tnglem 23347 log2ublem1 25636 log2ub 25639 log2le1 25640 birthday 25644 ppiublem1 25890 ppiub 25892 bpos1lem 25970 bpos1 25971 bpos 25981 vdegp1bi 27431 9p10ne21 28359 dp20u 30680 rpdp2cl 30684 dp2lt10 30686 dp2lt 30687 dp2ltsuc 30688 dp2ltc 30689 dpmul100 30699 dp3mul10 30700 dpmul1000 30701 dpgti 30708 dpadd2 30712 dpadd 30713 dpadd3 30714 dpmul 30715 dpmul4 30716 hgt750lemd 32151 hgt750lem 32154 hgt750leme 32161 tgoldbachgnn 32162 resqrtvalex 40746 imsqrtvalex 40747 fmtno4prmfac 44485 31prm 44510 evengpoap3 44712 ackval42 45503 |
Copyright terms: Public domain | W3C validator |