| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0rei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 12422 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3940 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11043 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-n0 12419 |
| This theorem is referenced by: nn0lele2xi 12474 numlt 12650 numltc 12651 decle 12659 decleh 12660 nn0le2msqi 14208 nn0opthlem2 14210 nn0opthi 14211 faclbnd4lem1 14234 hashunlei 14366 hashsslei 14367 fsumcube 16002 divalglem5 16343 prmreclem3 16865 prmreclem5 16867 modxai 17015 modsubi 17019 prmlem2 17066 slotsbhcdif 17354 psdmul 22086 dscmet 24493 log2ublem1 26889 log2ub 26892 log2le1 26893 birthday 26897 ppiublem1 27146 ppiub 27148 bpos1lem 27226 bpos1 27227 bpos 27237 vdegp1bi 29518 9p10ne21 30449 dp20u 32848 rpdp2cl 32852 dp2lt10 32854 dp2lt 32855 dp2ltsuc 32856 dp2ltc 32857 dpmul100 32867 dp3mul10 32868 dpmul1000 32869 dpgti 32876 dpadd2 32880 dpadd 32881 dpadd3 32882 dpmul 32883 dpmul4 32884 hgt750lemd 34632 hgt750lem 34635 hgt750leme 34642 tgoldbachgnn 34643 resqrtvalex 43627 imsqrtvalex 43628 fmtno4prmfac 47566 31prm 47591 evengpoap3 47793 ackval42 48678 |
| Copyright terms: Public domain | W3C validator |