| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0rei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 12505 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3955 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ℝcr 11128 ℕ0cn0 12501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-n0 12502 |
| This theorem is referenced by: nn0lele2xi 12557 numlt 12733 numltc 12734 decle 12742 decleh 12743 nn0le2msqi 14285 nn0opthlem2 14287 nn0opthi 14288 faclbnd4lem1 14311 hashunlei 14443 hashsslei 14444 fsumcube 16076 divalglem5 16416 prmreclem3 16938 prmreclem5 16940 modxai 17088 modsubi 17092 prmlem2 17139 slotsbhcdif 17429 psdmul 22104 dscmet 24511 log2ublem1 26908 log2ub 26911 log2le1 26912 birthday 26916 ppiublem1 27165 ppiub 27167 bpos1lem 27245 bpos1 27246 bpos 27256 vdegp1bi 29517 9p10ne21 30451 dp20u 32852 rpdp2cl 32856 dp2lt10 32858 dp2lt 32859 dp2ltsuc 32860 dp2ltc 32861 dpmul100 32871 dp3mul10 32872 dpmul1000 32873 dpgti 32880 dpadd2 32884 dpadd 32885 dpadd3 32886 dpmul 32887 dpmul4 32888 hgt750lemd 34680 hgt750lem 34683 hgt750leme 34690 tgoldbachgnn 34691 resqrtvalex 43669 imsqrtvalex 43670 fmtno4prmfac 47586 31prm 47611 evengpoap3 47813 ackval42 48676 |
| Copyright terms: Public domain | W3C validator |