Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version |
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0rei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 12246 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3919 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ℝcr 10879 ℕ0cn0 12242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-i2m1 10948 ax-1ne0 10949 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-nn 11983 df-n0 12243 |
This theorem is referenced by: nn0le2xi 12296 nn0lele2xi 12297 numlt 12471 numltc 12472 decle 12480 decleh 12481 nn0le2msqi 13990 nn0opthlem2 13992 nn0opthi 13993 faclbnd4lem1 14016 hashunlei 14149 hashsslei 14150 fsumcube 15779 divalglem5 16115 prmreclem3 16628 prmreclem5 16630 modxai 16778 modsubi 16782 prmlem2 16830 slotsbhcdif 17134 slotsbhcdifOLD 17135 cnfldfunALTOLD 20620 dscmet 23737 tnglemOLD 23806 log2ublem1 26105 log2ub 26108 log2le1 26109 birthday 26113 ppiublem1 26359 ppiub 26361 bpos1lem 26439 bpos1 26440 bpos 26450 vdegp1bi 27913 9p10ne21 28843 dp20u 31161 rpdp2cl 31165 dp2lt10 31167 dp2lt 31168 dp2ltsuc 31169 dp2ltc 31170 dpmul100 31180 dp3mul10 31181 dpmul1000 31182 dpgti 31189 dpadd2 31193 dpadd 31194 dpadd3 31195 dpmul 31196 dpmul4 31197 hgt750lemd 32637 hgt750lem 32640 hgt750leme 32647 tgoldbachgnn 32648 resqrtvalex 41260 imsqrtvalex 41261 fmtno4prmfac 45035 31prm 45060 evengpoap3 45262 ackval42 46053 prstcocvalOLD 46364 |
Copyright terms: Public domain | W3C validator |