| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0rei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 12453 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3946 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11074 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-n0 12450 |
| This theorem is referenced by: nn0lele2xi 12505 numlt 12681 numltc 12682 decle 12690 decleh 12691 nn0le2msqi 14239 nn0opthlem2 14241 nn0opthi 14242 faclbnd4lem1 14265 hashunlei 14397 hashsslei 14398 fsumcube 16033 divalglem5 16374 prmreclem3 16896 prmreclem5 16898 modxai 17046 modsubi 17050 prmlem2 17097 slotsbhcdif 17385 psdmul 22060 dscmet 24467 log2ublem1 26863 log2ub 26866 log2le1 26867 birthday 26871 ppiublem1 27120 ppiub 27122 bpos1lem 27200 bpos1 27201 bpos 27211 vdegp1bi 29472 9p10ne21 30406 dp20u 32805 rpdp2cl 32809 dp2lt10 32811 dp2lt 32812 dp2ltsuc 32813 dp2ltc 32814 dpmul100 32824 dp3mul10 32825 dpmul1000 32826 dpgti 32833 dpadd2 32837 dpadd 32838 dpadd3 32839 dpmul 32840 dpmul4 32841 hgt750lemd 34646 hgt750lem 34649 hgt750leme 34656 tgoldbachgnn 34657 resqrtvalex 43641 imsqrtvalex 43642 fmtno4prmfac 47577 31prm 47602 evengpoap3 47804 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |