| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0rei | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0rei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 12385 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3926 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℝcr 11005 ℕ0cn0 12381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-n0 12382 |
| This theorem is referenced by: nn0lele2xi 12437 numlt 12613 numltc 12614 decle 12622 decleh 12623 nn0le2msqi 14174 nn0opthlem2 14176 nn0opthi 14177 faclbnd4lem1 14200 hashunlei 14332 hashsslei 14333 fsumcube 15967 divalglem5 16308 prmreclem3 16830 prmreclem5 16832 modxai 16980 modsubi 16984 prmlem2 17031 slotsbhcdif 17319 psdmul 22081 dscmet 24487 log2ublem1 26883 log2ub 26886 log2le1 26887 birthday 26891 ppiublem1 27140 ppiub 27142 bpos1lem 27220 bpos1 27221 bpos 27231 vdegp1bi 29516 9p10ne21 30450 dp20u 32858 rpdp2cl 32862 dp2lt10 32864 dp2lt 32865 dp2ltsuc 32866 dp2ltc 32867 dpmul100 32877 dp3mul10 32878 dpmul1000 32879 dpgti 32886 dpadd2 32890 dpadd 32891 dpadd3 32892 dpmul 32893 dpmul4 32894 hgt750lemd 34661 hgt750lem 34664 hgt750leme 34671 tgoldbachgnn 34672 resqrtvalex 43748 imsqrtvalex 43749 fmtno4prmfac 47682 31prm 47707 evengpoap3 47909 ackval42 48807 |
| Copyright terms: Public domain | W3C validator |