Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nnrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nnre 11885 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 ℝcr 10776 ℕcn 11878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-i2m1 10845 ax-1ne0 10846 ax-rrecex 10849 ax-cnre 10850 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-nn 11879 |
This theorem is referenced by: nnne0i 11918 numlt 12366 numltc 12367 faclbnd4lem1 13910 ef01bndlem 15796 dvdslelem 15921 divalglem6 16010 pockthi 16511 modsubi 16676 prmlem1 16712 prmlem2 16724 strleun 16761 strle1 16762 basendxnplusgndx 16893 tsetndxnbasendx 16966 plendxnbasendx 16979 dsndxnbasendx 16995 unifndxnbasendx 17004 oppchomfvalOLD 17316 oppcbasOLD 17321 resccoOLD 17438 opprlemOLD 19758 sralemOLD 20330 zlmlemOLD 20606 znbaslemOLD 20630 opsrbaslemOLD 21136 tnglemOLD 23678 log2ublem1 25976 log2ublem2 25977 log2ub 25979 bpos1lem 26310 bposlem8 26319 bposlem9 26320 slotsinbpsd 26682 slotslnbpsd 26683 ttgval 27115 ttglemOLD 27117 cchhllemOLD 27133 basendxnedgfndx 27243 structvtxvallem 27268 lmat22e12 31646 lmat22e21 31647 lmat22e22 31648 ballotlem2 32330 ballotlem5 32341 ballotth 32379 chtvalz 32484 hgt750lem 32506 tgoldbachgt 32518 cnndvlem1 34619 hlhilslemOLD 39859 lcmineqlem 39967 3lexlogpow5ineq1 39969 jm2.27dlem2 40720 bgoldbtbndlem1 45118 tgblthelfgott 45128 tgoldbachlt 45129 |
Copyright terms: Public domain | W3C validator |