| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nnre 12169 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11043 ℕcn 12162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 |
| This theorem is referenced by: nnne0i 12202 numlt 12650 numltc 12651 faclbnd4lem1 14234 ef01bndlem 16128 dvdslelem 16255 divalglem6 16344 pockthi 16854 modsubi 17019 prmlem1 17054 prmlem2 17066 strleun 17103 strle1 17104 basendxnplusgndx 17226 tsetndxnbasendx 17295 plendxnbasendx 17309 dsndxnbasendx 17328 unifndxnbasendx 17338 slotsdifunifndx 17340 slotsdifocndx 17356 log2ublem1 26889 log2ublem2 26890 log2ub 26892 bpos1lem 27226 bposlem8 27235 bposlem9 27236 slotsinbpsd 28421 slotslnbpsd 28422 lngndxnitvndx 28423 basendxnedgfndx 28975 structvtxvallem 29000 lmat22e12 33802 lmat22e21 33803 lmat22e22 33804 ballotlem2 34473 ballotlem5 34484 ballotth 34522 chtvalz 34613 hgt750lem 34635 tgoldbachgt 34647 cnndvlem1 36518 lcmineqlem 42033 3lexlogpow5ineq1 42035 jm2.27dlem2 42992 bgoldbtbndlem1 47799 tgblthelfgott 47809 tgoldbachlt 47810 |
| Copyright terms: Public domain | W3C validator |