Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nnrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nnre 11980 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℝcr 10870 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 |
This theorem is referenced by: nnne0i 12013 numlt 12462 numltc 12463 faclbnd4lem1 14007 ef01bndlem 15893 dvdslelem 16018 divalglem6 16107 pockthi 16608 modsubi 16773 prmlem1 16809 prmlem2 16821 strleun 16858 strle1 16859 basendxnplusgndx 16992 tsetndxnbasendx 17066 plendxnbasendx 17080 dsndxnbasendx 17099 unifndxnbasendx 17109 slotsdifunifndx 17111 slotsdifocndx 17128 oppchomfvalOLD 17424 oppcbasOLD 17429 resccoOLD 17546 opprlemOLD 19868 sralemOLD 20440 zlmlemOLD 20719 znbaslemOLD 20743 opsrbaslemOLD 21251 tnglemOLD 23797 log2ublem1 26096 log2ublem2 26097 log2ub 26099 bpos1lem 26430 bposlem8 26439 bposlem9 26440 slotsinbpsd 26802 slotslnbpsd 26803 lngndxnitvndx 26804 ttgvalOLD 27237 ttglemOLD 27239 cchhllemOLD 27255 basendxnedgfndx 27365 structvtxvallem 27390 lmat22e12 31769 lmat22e21 31770 lmat22e22 31771 ballotlem2 32455 ballotlem5 32466 ballotth 32504 chtvalz 32609 hgt750lem 32631 tgoldbachgt 32643 cnndvlem1 34717 hlhilslemOLD 39953 lcmineqlem 40060 3lexlogpow5ineq1 40062 jm2.27dlem2 40832 bgoldbtbndlem1 45257 tgblthelfgott 45267 tgoldbachlt 45268 |
Copyright terms: Public domain | W3C validator |