Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nnrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nnre 11666 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 ℝcr 10559 ℕcn 11659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pr 5291 ax-un 7452 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-i2m1 10628 ax-1ne0 10629 ax-rrecex 10632 ax-cnre 10633 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-ov 7146 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-nn 11660 |
This theorem is referenced by: nnne0i 11699 numlt 12147 numltc 12148 faclbnd4lem1 13688 ef01bndlem 15570 dvdslelem 15695 divalglem6 15784 pockthi 16283 modsubi 16448 prmlem1 16484 prmlem2 16496 strleun 16634 strle1 16635 oppchomfval 17027 oppcbas 17031 rescco 17146 opprlem 19434 sralem 20002 zlmlem 20271 znbaslem 20291 opsrbaslem 20794 tnglem 23327 log2ublem1 25616 log2ublem2 25617 log2ub 25619 bpos1lem 25950 bposlem8 25959 bposlem9 25960 ttgval 26753 ttglem 26754 cchhllem 26765 slotsbaseefdif 26872 structvtxvallem 26897 lmat22e12 31275 lmat22e21 31276 lmat22e22 31277 ballotlem2 31959 ballotlem5 31970 ballotth 32008 chtvalz 32113 hgt750lem 32135 tgoldbachgt 32147 cnndvlem1 34251 hlhilslem 39499 lcmineqlem 39604 3lexlogpow5ineq1 39606 jm2.27dlem2 40309 bgoldbtbndlem1 44675 tgblthelfgott 44685 tgoldbachlt 44686 |
Copyright terms: Public domain | W3C validator |