| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nnre 12132 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℝcr 11005 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 |
| This theorem is referenced by: nnne0i 12165 numlt 12613 numltc 12614 faclbnd4lem1 14200 ef01bndlem 16093 dvdslelem 16220 divalglem6 16309 pockthi 16819 modsubi 16984 prmlem1 17019 prmlem2 17031 strleun 17068 strle1 17069 basendxnplusgndx 17191 tsetndxnbasendx 17260 plendxnbasendx 17274 dsndxnbasendx 17293 unifndxnbasendx 17303 slotsdifunifndx 17305 slotsdifocndx 17321 log2ublem1 26883 log2ublem2 26884 log2ub 26886 bpos1lem 27220 bposlem8 27229 bposlem9 27230 slotsinbpsd 28419 slotslnbpsd 28420 lngndxnitvndx 28421 basendxnedgfndx 28973 structvtxvallem 28998 lmat22e12 33832 lmat22e21 33833 lmat22e22 33834 ballotlem2 34502 ballotlem5 34513 ballotth 34551 chtvalz 34642 hgt750lem 34664 tgoldbachgt 34676 cnndvlem1 36581 lcmineqlem 42155 3lexlogpow5ineq1 42157 jm2.27dlem2 43113 bgoldbtbndlem1 47915 tgblthelfgott 47925 tgoldbachlt 47926 |
| Copyright terms: Public domain | W3C validator |