MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrei Structured version   Visualization version   GIF version

Theorem nnrei 12249
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nnrei 𝐴 ∈ ℝ

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2 𝐴 ∈ ℕ
2 nnre 12247 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cr 11128  cn 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-rrecex 11201  ax-cnre 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241
This theorem is referenced by:  nnne0i  12280  numlt  12733  numltc  12734  faclbnd4lem1  14311  ef01bndlem  16202  dvdslelem  16328  divalglem6  16417  pockthi  16927  modsubi  17092  prmlem1  17127  prmlem2  17139  strleun  17176  strle1  17177  basendxnplusgndx  17301  tsetndxnbasendx  17370  plendxnbasendx  17384  dsndxnbasendx  17403  unifndxnbasendx  17413  slotsdifunifndx  17415  slotsdifocndx  17431  log2ublem1  26908  log2ublem2  26909  log2ub  26911  bpos1lem  27245  bposlem8  27254  bposlem9  27255  slotsinbpsd  28420  slotslnbpsd  28421  lngndxnitvndx  28422  basendxnedgfndx  28974  structvtxvallem  28999  lmat22e12  33850  lmat22e21  33851  lmat22e22  33852  ballotlem2  34521  ballotlem5  34532  ballotth  34570  chtvalz  34661  hgt750lem  34683  tgoldbachgt  34695  cnndvlem1  36555  lcmineqlem  42065  3lexlogpow5ineq1  42067  jm2.27dlem2  43034  bgoldbtbndlem1  47819  tgblthelfgott  47829  tgoldbachlt  47830
  Copyright terms: Public domain W3C validator