![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nnrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nnre 12270 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ℝcr 11151 ℕcn 12263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-i2m1 11220 ax-1ne0 11221 ax-rrecex 11224 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 |
This theorem is referenced by: nnne0i 12303 numlt 12755 numltc 12756 faclbnd4lem1 14328 ef01bndlem 16216 dvdslelem 16342 divalglem6 16431 pockthi 16940 modsubi 17105 prmlem1 17141 prmlem2 17153 strleun 17190 strle1 17191 basendxnplusgndx 17327 tsetndxnbasendx 17401 plendxnbasendx 17415 dsndxnbasendx 17434 unifndxnbasendx 17444 slotsdifunifndx 17446 slotsdifocndx 17463 oppchomfvalOLD 17759 oppcbasOLD 17764 resccoOLD 17881 opprlemOLD 20356 sralemOLD 21193 zlmlemOLD 21545 znbaslemOLD 21571 opsrbaslemOLD 22085 tnglemOLD 24669 log2ublem1 27003 log2ublem2 27004 log2ub 27006 bpos1lem 27340 bposlem8 27349 bposlem9 27350 slotsinbpsd 28463 slotslnbpsd 28464 lngndxnitvndx 28465 ttgvalOLD 28898 ttglemOLD 28900 cchhllemOLD 28916 basendxnedgfndx 29026 structvtxvallem 29051 lmat22e12 33779 lmat22e21 33780 lmat22e22 33781 ballotlem2 34469 ballotlem5 34480 ballotth 34518 chtvalz 34622 hgt750lem 34644 tgoldbachgt 34656 cnndvlem1 36519 hlhilslemOLD 41921 lcmineqlem 42033 3lexlogpow5ineq1 42035 jm2.27dlem2 42998 bgoldbtbndlem1 47729 tgblthelfgott 47739 tgoldbachlt 47740 |
Copyright terms: Public domain | W3C validator |