MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrei Structured version   Visualization version   GIF version

Theorem nnrei 12137
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nnrei 𝐴 ∈ ℝ

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2 𝐴 ∈ ℕ
2 nnre 12135 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cr 11008  cn 12128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-i2m1 11077  ax-1ne0 11078  ax-rrecex 11081  ax-cnre 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129
This theorem is referenced by:  nnne0i  12168  numlt  12616  numltc  12617  faclbnd4lem1  14200  ef01bndlem  16093  dvdslelem  16220  divalglem6  16309  pockthi  16819  modsubi  16984  prmlem1  17019  prmlem2  17031  strleun  17068  strle1  17069  basendxnplusgndx  17191  tsetndxnbasendx  17260  plendxnbasendx  17274  dsndxnbasendx  17293  unifndxnbasendx  17303  slotsdifunifndx  17305  slotsdifocndx  17321  log2ublem1  26854  log2ublem2  26855  log2ub  26857  bpos1lem  27191  bposlem8  27200  bposlem9  27201  slotsinbpsd  28386  slotslnbpsd  28387  lngndxnitvndx  28388  basendxnedgfndx  28940  structvtxvallem  28965  lmat22e12  33786  lmat22e21  33787  lmat22e22  33788  ballotlem2  34457  ballotlem5  34468  ballotth  34506  chtvalz  34597  hgt750lem  34619  tgoldbachgt  34631  cnndvlem1  36515  lcmineqlem  42029  3lexlogpow5ineq1  42031  jm2.27dlem2  42987  bgoldbtbndlem1  47793  tgblthelfgott  47803  tgoldbachlt  47804
  Copyright terms: Public domain W3C validator