| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nnre 12193 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11067 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 |
| This theorem is referenced by: nnne0i 12226 numlt 12674 numltc 12675 faclbnd4lem1 14258 ef01bndlem 16152 dvdslelem 16279 divalglem6 16368 pockthi 16878 modsubi 17043 prmlem1 17078 prmlem2 17090 strleun 17127 strle1 17128 basendxnplusgndx 17250 tsetndxnbasendx 17319 plendxnbasendx 17333 dsndxnbasendx 17352 unifndxnbasendx 17362 slotsdifunifndx 17364 slotsdifocndx 17380 log2ublem1 26856 log2ublem2 26857 log2ub 26859 bpos1lem 27193 bposlem8 27202 bposlem9 27203 slotsinbpsd 28368 slotslnbpsd 28369 lngndxnitvndx 28370 basendxnedgfndx 28922 structvtxvallem 28947 lmat22e12 33809 lmat22e21 33810 lmat22e22 33811 ballotlem2 34480 ballotlem5 34491 ballotth 34529 chtvalz 34620 hgt750lem 34642 tgoldbachgt 34654 cnndvlem1 36525 lcmineqlem 42040 3lexlogpow5ineq1 42042 jm2.27dlem2 42999 bgoldbtbndlem1 47806 tgblthelfgott 47816 tgoldbachlt 47817 |
| Copyright terms: Public domain | W3C validator |