![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnrei | Structured version Visualization version GIF version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nnrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nnre 12300 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℝcr 11183 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 |
This theorem is referenced by: nnne0i 12333 numlt 12783 numltc 12784 faclbnd4lem1 14342 ef01bndlem 16232 dvdslelem 16357 divalglem6 16446 pockthi 16954 modsubi 17119 prmlem1 17155 prmlem2 17167 strleun 17204 strle1 17205 basendxnplusgndx 17341 tsetndxnbasendx 17415 plendxnbasendx 17429 dsndxnbasendx 17448 unifndxnbasendx 17458 slotsdifunifndx 17460 slotsdifocndx 17477 oppchomfvalOLD 17773 oppcbasOLD 17778 resccoOLD 17895 opprlemOLD 20366 sralemOLD 21199 zlmlemOLD 21551 znbaslemOLD 21577 opsrbaslemOLD 22091 tnglemOLD 24675 log2ublem1 27007 log2ublem2 27008 log2ub 27010 bpos1lem 27344 bposlem8 27353 bposlem9 27354 slotsinbpsd 28467 slotslnbpsd 28468 lngndxnitvndx 28469 ttgvalOLD 28902 ttglemOLD 28904 cchhllemOLD 28920 basendxnedgfndx 29030 structvtxvallem 29055 lmat22e12 33765 lmat22e21 33766 lmat22e22 33767 ballotlem2 34453 ballotlem5 34464 ballotth 34502 chtvalz 34606 hgt750lem 34628 tgoldbachgt 34640 cnndvlem1 36503 hlhilslemOLD 41896 lcmineqlem 42009 3lexlogpow5ineq1 42011 jm2.27dlem2 42967 bgoldbtbndlem1 47679 tgblthelfgott 47689 tgoldbachlt 47690 |
Copyright terms: Public domain | W3C validator |