MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0mulcli Structured version   Visualization version   GIF version

Theorem nn0mulcli 12480
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0addcli.1 𝑀 ∈ ℕ0
nn0addcli.2 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0mulcli (𝑀 · 𝑁) ∈ ℕ0

Proof of Theorem nn0mulcli
StepHypRef Expression
1 nn0addcli.1 . 2 𝑀 ∈ ℕ0
2 nn0addcli.2 . 2 𝑁 ∈ ℕ0
3 nn0mulcl 12478 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
41, 2, 3mp2an 692 1 (𝑀 · 𝑁) ∈ ℕ0
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7387   · cmul 11073  0cn0 12442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-nn 12187  df-n0 12443
This theorem is referenced by:  numnncl  12659  num0u  12660  numcl  12662  numsuc  12663  numlt  12674  decle  12683  decrmanc  12706  decsubi  12712  decmul1  12713  decmulnc  12716  decmul10add  12718  expnass  14173  nn0opthlem1  14233  faclbnd4lem1  14258  dec2dvds  17034  dec5dvds  17035  gcdi  17044  decsplit  17053  log2ublem1  26856  log2ublem2  26857  log2ublem3  26858  log2ub  26859  bclbnd  27191  dpmul  32833  sqn5i  42273  decpmulnc  42275  decpmul  42276  sqdeccom12  42277
  Copyright terms: Public domain W3C validator