MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0mulcli Structured version   Visualization version   GIF version

Theorem nn0mulcli 12506
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0addcli.1 𝑀 ∈ ℕ0
nn0addcli.2 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0mulcli (𝑀 · 𝑁) ∈ ℕ0

Proof of Theorem nn0mulcli
StepHypRef Expression
1 nn0addcli.1 . 2 𝑀 ∈ ℕ0
2 nn0addcli.2 . 2 𝑁 ∈ ℕ0
3 nn0mulcl 12504 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
41, 2, 3mp2an 691 1 (𝑀 · 𝑁) ∈ ℕ0
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  (class class class)co 7404   · cmul 11111  0cn0 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-nn 12209  df-n0 12469
This theorem is referenced by:  numnncl  12683  num0u  12684  numcl  12686  numsuc  12687  numlt  12698  decle  12707  decrmanc  12730  decsubi  12736  decmul1  12737  decmulnc  12740  decmul10add  12742  expnass  14168  nn0opthlem1  14224  faclbnd4lem1  14249  dec2dvds  16992  dec5dvds  16993  gcdi  17002  decexp2  17004  decsplit  17012  log2ublem1  26431  log2ublem2  26432  log2ublem3  26433  log2ub  26434  bclbnd  26763  dpmul  32057  sqn5i  41147  decpmulnc  41149  decpmul  41150  sqdeccom12  41151
  Copyright terms: Public domain W3C validator