| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0mulcli | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0addcli.1 | ⊢ 𝑀 ∈ ℕ0 |
| nn0addcli.2 | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0mulcli | ⊢ (𝑀 · 𝑁) ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcli.1 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
| 2 | nn0addcli.2 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | nn0mulcl 12424 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑀 · 𝑁) ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7352 · cmul 11018 ℕ0cn0 12388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-nn 12133 df-n0 12389 |
| This theorem is referenced by: numnncl 12604 num0u 12605 numcl 12607 numsuc 12608 numlt 12619 decle 12628 decrmanc 12651 decsubi 12657 decmul1 12658 decmulnc 12661 decmul10add 12663 expnass 14117 nn0opthlem1 14177 faclbnd4lem1 14202 dec2dvds 16977 dec5dvds 16978 gcdi 16987 decsplit 16996 log2ublem1 26884 log2ublem2 26885 log2ublem3 26886 log2ub 26887 bclbnd 27219 dpmul 32900 sqn5i 42403 decpmulnc 42405 decpmul 42406 sqdeccom12 42407 |
| Copyright terms: Public domain | W3C validator |