| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decsuc | Structured version Visualization version GIF version | ||
| Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| declt.a | ⊢ 𝐴 ∈ ℕ0 |
| declt.b | ⊢ 𝐵 ∈ ℕ0 |
| decsuc.c | ⊢ (𝐵 + 1) = 𝐶 |
| decsuc.n | ⊢ 𝑁 = ;𝐴𝐵 |
| Ref | Expression |
|---|---|
| decsuc | ⊢ (𝑁 + 1) = ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12667 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | declt.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | declt.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | decsuc.c | . . 3 ⊢ (𝐵 + 1) = 𝐶 | |
| 5 | decsuc.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 6 | dfdec10 12652 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 7 | 5, 6 | eqtri 2752 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
| 8 | 1, 2, 3, 4, 7 | numsuc 12663 | . 2 ⊢ (𝑁 + 1) = ((;10 · 𝐴) + 𝐶) |
| 9 | dfdec10 12652 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 10 | 8, 9 | eqtr4i 2755 | 1 ⊢ (𝑁 + 1) = ;𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ℕ0cn0 12442 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 |
| This theorem is referenced by: 6p5lem 12719 dec2dvds 17034 13prm 17086 19prm 17088 37prm 17091 43prm 17092 139prm 17094 163prm 17095 317prm 17096 1259lem1 17101 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 4001prm 17115 log2ublem3 26858 log2ub 26859 birthday 26864 ex-exp 30379 dpmul4 32834 cos9thpiminplylem1 33772 hgt750lem2 34643 420gcd8e4 41994 3lexlogpow5ineq1 42042 aks4d1p1 42064 fmtno2 47548 fmtno3 47549 fmtno4 47550 fmtno5lem1 47551 fmtno5lem2 47552 fmtno5lem3 47553 fmtno5lem4 47554 fmtno5 47555 257prm 47559 fmtno4prmfac 47570 fmtno4nprmfac193 47572 fmtno5fac 47580 139prmALT 47594 m7prm 47598 m11nprm 47599 2exp340mod341 47731 8exp8mod9 47734 ackval41 48681 |
| Copyright terms: Public domain | W3C validator |