| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decsuc | Structured version Visualization version GIF version | ||
| Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| declt.a | ⊢ 𝐴 ∈ ℕ0 |
| declt.b | ⊢ 𝐵 ∈ ℕ0 |
| decsuc.c | ⊢ (𝐵 + 1) = 𝐶 |
| decsuc.n | ⊢ 𝑁 = ;𝐴𝐵 |
| Ref | Expression |
|---|---|
| decsuc | ⊢ (𝑁 + 1) = ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12731 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | declt.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | declt.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | decsuc.c | . . 3 ⊢ (𝐵 + 1) = 𝐶 | |
| 5 | decsuc.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 6 | dfdec10 12716 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 7 | 5, 6 | eqtri 2759 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
| 8 | 1, 2, 3, 4, 7 | numsuc 12727 | . 2 ⊢ (𝑁 + 1) = ((;10 · 𝐴) + 𝐶) |
| 9 | dfdec10 12716 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 10 | 8, 9 | eqtr4i 2762 | 1 ⊢ (𝑁 + 1) = ;𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 ℕ0cn0 12506 ;cdc 12713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-dec 12714 |
| This theorem is referenced by: 6p5lem 12783 dec2dvds 17088 13prm 17140 19prm 17142 37prm 17145 43prm 17146 139prm 17148 163prm 17149 317prm 17150 1259lem1 17155 1259lem3 17157 1259lem4 17158 1259lem5 17159 2503lem1 17161 2503lem2 17162 2503lem3 17163 2503prm 17164 4001lem1 17165 4001lem2 17166 4001lem3 17167 4001lem4 17168 4001prm 17169 log2ublem3 26915 log2ub 26916 birthday 26921 ex-exp 30436 dpmul4 32893 cos9thpiminplylem1 33821 hgt750lem2 34689 420gcd8e4 42024 3lexlogpow5ineq1 42072 aks4d1p1 42094 fmtno2 47531 fmtno3 47532 fmtno4 47533 fmtno5lem1 47534 fmtno5lem2 47535 fmtno5lem3 47536 fmtno5lem4 47537 fmtno5 47538 257prm 47542 fmtno4prmfac 47553 fmtno4nprmfac193 47555 fmtno5fac 47563 139prmALT 47577 m7prm 47581 m11nprm 47582 2exp340mod341 47714 8exp8mod9 47717 ackval41 48642 |
| Copyright terms: Public domain | W3C validator |