| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decsuc | Structured version Visualization version GIF version | ||
| Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| declt.a | ⊢ 𝐴 ∈ ℕ0 |
| declt.b | ⊢ 𝐵 ∈ ℕ0 |
| decsuc.c | ⊢ (𝐵 + 1) = 𝐶 |
| decsuc.n | ⊢ 𝑁 = ;𝐴𝐵 |
| Ref | Expression |
|---|---|
| decsuc | ⊢ (𝑁 + 1) = ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12606 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | declt.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | declt.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | decsuc.c | . . 3 ⊢ (𝐵 + 1) = 𝐶 | |
| 5 | decsuc.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 6 | dfdec10 12591 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 7 | 5, 6 | eqtri 2754 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
| 8 | 1, 2, 3, 4, 7 | numsuc 12602 | . 2 ⊢ (𝑁 + 1) = ((;10 · 𝐴) + 𝐶) |
| 9 | dfdec10 12591 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 10 | 8, 9 | eqtr4i 2757 | 1 ⊢ (𝑁 + 1) = ;𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ℕ0cn0 12381 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 |
| This theorem is referenced by: 6p5lem 12658 dec2dvds 16975 13prm 17027 19prm 17029 37prm 17032 43prm 17033 139prm 17035 163prm 17036 317prm 17037 1259lem1 17042 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 4001prm 17056 log2ublem3 26885 log2ub 26886 birthday 26891 ex-exp 30430 dpmul4 32894 cos9thpiminplylem1 33795 hgt750lem2 34665 420gcd8e4 42109 3lexlogpow5ineq1 42157 aks4d1p1 42179 fmtno2 47660 fmtno3 47661 fmtno4 47662 fmtno5lem1 47663 fmtno5lem2 47664 fmtno5lem3 47665 fmtno5lem4 47666 fmtno5 47667 257prm 47671 fmtno4prmfac 47682 fmtno4nprmfac193 47684 fmtno5fac 47692 139prmALT 47706 m7prm 47710 m11nprm 47711 2exp340mod341 47843 8exp8mod9 47846 ackval41 48806 |
| Copyright terms: Public domain | W3C validator |