![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decsuc | Structured version Visualization version GIF version |
Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
declt.a | ⊢ 𝐴 ∈ ℕ0 |
declt.b | ⊢ 𝐵 ∈ ℕ0 |
decsuc.c | ⊢ (𝐵 + 1) = 𝐶 |
decsuc.n | ⊢ 𝑁 = ;𝐴𝐵 |
Ref | Expression |
---|---|
decsuc | ⊢ (𝑁 + 1) = ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 11922 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | declt.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
3 | declt.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
4 | decsuc.c | . . 3 ⊢ (𝐵 + 1) = 𝐶 | |
5 | decsuc.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
6 | dfdec10 11907 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
7 | 5, 6 | eqtri 2796 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
8 | 1, 2, 3, 4, 7 | numsuc 11918 | . 2 ⊢ (𝑁 + 1) = ((;10 · 𝐴) + 𝐶) |
9 | dfdec10 11907 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
10 | 8, 9 | eqtr4i 2799 | 1 ⊢ (𝑁 + 1) = ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2048 (class class class)co 6970 0cc0 10327 1c1 10328 + caddc 10330 · cmul 10332 ℕ0cn0 11700 ;cdc 11904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-om 7391 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-ltxr 10471 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-dec 11905 |
This theorem is referenced by: 6p5lem 11976 dec2dvds 16245 13prm 16295 19prm 16297 37prm 16300 43prm 16301 139prm 16303 163prm 16304 317prm 16305 1259lem1 16310 1259lem3 16312 1259lem4 16313 1259lem5 16314 2503lem1 16316 2503lem2 16317 2503lem3 16318 2503prm 16319 4001lem1 16320 4001lem2 16321 4001lem3 16322 4001lem4 16323 4001prm 16324 log2ublem3 25218 log2ub 25219 birthday 25224 ex-exp 27997 dpmul4 30325 hgt750lem2 31532 fmtno2 43020 fmtno3 43021 fmtno4 43022 fmtno5lem1 43023 fmtno5lem2 43024 fmtno5lem3 43025 fmtno5lem4 43026 fmtno5 43027 257prm 43031 fmtno4prmfac 43042 fmtno4nprmfac193 43044 fmtno5fac 43052 139prmALT 43067 m7prm 43072 m11nprm 43074 2exp340mod341 43206 8exp8mod9 43209 |
Copyright terms: Public domain | W3C validator |