| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deccl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deccl.1 | ⊢ 𝐴 ∈ ℕ0 |
| deccl.2 | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| deccl | ⊢ ;𝐴𝐵 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12707 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 9nn0 12523 | . . . 4 ⊢ 9 ∈ ℕ0 | |
| 3 | 1nn0 12515 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 4 | 2, 3 | nn0addcli 12536 | . . 3 ⊢ (9 + 1) ∈ ℕ0 |
| 5 | deccl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 6 | deccl.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 7 | 4, 5, 6 | numcl 12719 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) ∈ ℕ0 |
| 8 | 1, 7 | eqeltri 2830 | 1 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 1c1 11128 + caddc 11130 · cmul 11132 9c9 12300 ℕ0cn0 12499 ;cdc 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 |
| This theorem is referenced by: 10nn0 12724 3declth 12738 3decltc 12739 decleh 12741 decmul1 12770 bpoly4 16073 fsumcube 16074 3dvds2dec 16350 dec2dvds 17081 dec5dvds2 17083 2exp8 17106 2exp11 17107 2exp16 17108 prmlem2 17137 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 1259prm 17153 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001lem4 17161 4001prm 17162 slotsbhcdif 17427 quart1cl 26814 quart1lem 26815 quart1 26816 log2ublem3 26908 log2ub 26909 log2le1 26910 birthday 26914 bpos1 27244 bpos 27254 1kp2ke3k 30373 9p10ne21 30397 dp3mul10 32818 dpmul1000 32819 dpadd 32831 dpmul 32833 dpmul4 32834 cos9thpiminplylem1 33762 hgt750lemd 34626 hgt750lem 34629 hgt750lem2 34630 hgt750leme 34636 tgoldbachgnn 34637 tgoldbachgt 34641 kur14lem9 35182 420gcd8e4 41965 12lcm5e60 41967 60lcm7e420 41969 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow5ineq2 42014 3lexlogpow5ineq5 42019 aks4d1p1 42035 sqn5i 42282 decpmulnc 42284 decpmul 42285 sqdeccom12 42286 sq3deccom12 42287 235t711 42301 ex-decpmul 42302 sq45 42641 sum9cubes 42642 resqrtvalex 43616 imsqrtvalex 43617 inductionexd 44126 fmtno3 47513 fmtno4 47514 fmtno5lem1 47515 fmtno5lem2 47516 fmtno5lem3 47517 fmtno5lem4 47518 fmtno5 47519 257prm 47523 fmtno4prmfac 47534 fmtno4nprmfac193 47536 fmtno5faclem1 47541 fmtno5faclem2 47542 fmtno5faclem3 47543 fmtno5fac 47544 fmtno5nprm 47545 139prmALT 47558 31prm 47559 127prm 47561 m7prm 47562 m11nprm 47563 11t31e341 47694 2exp340mod341 47695 341fppr2 47696 nfermltl2rev 47705 evengpoap3 47761 bgoldbachlt 47775 tgoldbachlt 47778 ackval3012 48620 ackval41a 48622 ackval41 48623 ackval42 48624 |
| Copyright terms: Public domain | W3C validator |