![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deccl | Structured version Visualization version GIF version |
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
deccl.1 | ⊢ 𝐴 ∈ ℕ0 |
deccl.2 | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
deccl | ⊢ ;𝐴𝐵 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12759 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9nn0 12577 | . . . 4 ⊢ 9 ∈ ℕ0 | |
3 | 1nn0 12569 | . . . 4 ⊢ 1 ∈ ℕ0 | |
4 | 2, 3 | nn0addcli 12590 | . . 3 ⊢ (9 + 1) ∈ ℕ0 |
5 | deccl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
6 | deccl.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
7 | 4, 5, 6 | numcl 12771 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) ∈ ℕ0 |
8 | 1, 7 | eqeltri 2840 | 1 ⊢ ;𝐴𝐵 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 9c9 12355 ℕ0cn0 12553 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 |
This theorem is referenced by: 10nn0 12776 3declth 12790 3decltc 12791 decleh 12793 decmul1 12822 bpoly4 16107 fsumcube 16108 3dvds2dec 16381 dec2dvds 17110 dec5dvds2 17112 2exp8 17136 2exp11 17137 2exp16 17138 prmlem2 17167 37prm 17168 43prm 17169 83prm 17170 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 4001prm 17192 slotsbhcdif 17474 slotsbhcdifOLD 17475 cnfldfunALTOLDOLD 21416 tnglemOLD 24675 quart1cl 26915 quart1lem 26916 quart1 26917 log2ublem3 27009 log2ub 27010 log2le1 27011 birthday 27015 bpos1 27345 bpos 27355 1kp2ke3k 30478 9p10ne21 30502 dp3mul10 32862 dpmul1000 32863 dpadd 32875 dpmul 32877 dpmul4 32878 hgt750lemd 34625 hgt750lem 34628 hgt750lem2 34629 hgt750leme 34635 tgoldbachgnn 34636 tgoldbachgt 34640 kur14lem9 35182 420gcd8e4 41963 12lcm5e60 41965 60lcm7e420 41967 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow5ineq2 42012 3lexlogpow5ineq5 42017 aks4d1p1 42033 sqn5i 42274 decpmulnc 42276 decpmul 42277 sqdeccom12 42278 sq3deccom12 42279 235t711 42293 ex-decpmul 42294 sq45 42626 sum9cubes 42627 resqrtvalex 43607 imsqrtvalex 43608 inductionexd 44117 fmtno3 47425 fmtno4 47426 fmtno5lem1 47427 fmtno5lem2 47428 fmtno5lem3 47429 fmtno5lem4 47430 fmtno5 47431 257prm 47435 fmtno4prmfac 47446 fmtno4nprmfac193 47448 fmtno5faclem1 47453 fmtno5faclem2 47454 fmtno5faclem3 47455 fmtno5fac 47456 fmtno5nprm 47457 139prmALT 47470 31prm 47471 127prm 47473 m7prm 47474 m11nprm 47475 11t31e341 47606 2exp340mod341 47607 341fppr2 47608 nfermltl2rev 47617 evengpoap3 47673 bgoldbachlt 47687 tgoldbachlt 47690 ackval3012 48426 ackval41a 48428 ackval41 48429 ackval42 48430 prstcocvalOLD 48739 |
Copyright terms: Public domain | W3C validator |