MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deccl Structured version   Visualization version   GIF version

Theorem deccl 12748
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
deccl.1 𝐴 ∈ ℕ0
deccl.2 𝐵 ∈ ℕ0
Assertion
Ref Expression
deccl 𝐴𝐵 ∈ ℕ0

Proof of Theorem deccl
StepHypRef Expression
1 df-dec 12734 . 2 𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
2 9nn0 12550 . . . 4 9 ∈ ℕ0
3 1nn0 12542 . . . 4 1 ∈ ℕ0
42, 3nn0addcli 12563 . . 3 (9 + 1) ∈ ℕ0
5 deccl.1 . . 3 𝐴 ∈ ℕ0
6 deccl.2 . . 3 𝐵 ∈ ℕ0
74, 5, 6numcl 12746 . 2 (((9 + 1) · 𝐴) + 𝐵) ∈ ℕ0
81, 7eqeltri 2837 1 𝐴𝐵 ∈ ℕ0
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7431  1c1 11156   + caddc 11158   · cmul 11160  9c9 12328  0cn0 12526  cdc 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-dec 12734
This theorem is referenced by:  10nn0  12751  3declth  12765  3decltc  12766  decleh  12768  decmul1  12797  bpoly4  16095  fsumcube  16096  3dvds2dec  16370  dec2dvds  17101  dec5dvds2  17103  2exp8  17126  2exp11  17127  2exp16  17128  prmlem2  17157  37prm  17158  43prm  17159  83prm  17160  139prm  17161  163prm  17162  317prm  17163  631prm  17164  1259lem1  17168  1259lem2  17169  1259lem3  17170  1259lem4  17171  1259lem5  17172  1259prm  17173  2503lem1  17174  2503lem2  17175  2503lem3  17176  2503prm  17177  4001lem1  17178  4001lem2  17179  4001lem3  17180  4001lem4  17181  4001prm  17182  slotsbhcdif  17459  slotsbhcdifOLD  17460  cnfldfunALTOLDOLD  21393  tnglemOLD  24654  quart1cl  26897  quart1lem  26898  quart1  26899  log2ublem3  26991  log2ub  26992  log2le1  26993  birthday  26997  bpos1  27327  bpos  27337  1kp2ke3k  30465  9p10ne21  30489  dp3mul10  32880  dpmul1000  32881  dpadd  32893  dpmul  32895  dpmul4  32896  hgt750lemd  34663  hgt750lem  34666  hgt750lem2  34667  hgt750leme  34673  tgoldbachgnn  34674  tgoldbachgt  34678  kur14lem9  35219  420gcd8e4  42007  12lcm5e60  42009  60lcm7e420  42011  3exp7  42054  3lexlogpow5ineq1  42055  3lexlogpow5ineq2  42056  3lexlogpow5ineq5  42061  aks4d1p1  42077  sqn5i  42320  decpmulnc  42322  decpmul  42323  sqdeccom12  42324  sq3deccom12  42325  235t711  42339  ex-decpmul  42340  sq45  42681  sum9cubes  42682  resqrtvalex  43658  imsqrtvalex  43659  inductionexd  44168  fmtno3  47538  fmtno4  47539  fmtno5lem1  47540  fmtno5lem2  47541  fmtno5lem3  47542  fmtno5lem4  47543  fmtno5  47544  257prm  47548  fmtno4prmfac  47559  fmtno4nprmfac193  47561  fmtno5faclem1  47566  fmtno5faclem2  47567  fmtno5faclem3  47568  fmtno5fac  47569  fmtno5nprm  47570  139prmALT  47583  31prm  47584  127prm  47586  m7prm  47587  m11nprm  47588  11t31e341  47719  2exp340mod341  47720  341fppr2  47721  nfermltl2rev  47730  evengpoap3  47786  bgoldbachlt  47800  tgoldbachlt  47803  ackval3012  48613  ackval41a  48615  ackval41  48616  ackval42  48617  prstcocvalOLD  49161
  Copyright terms: Public domain W3C validator