![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deccl | Structured version Visualization version GIF version |
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
deccl.1 | ⊢ 𝐴 ∈ ℕ0 |
deccl.2 | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
deccl | ⊢ ;𝐴𝐵 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12731 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9nn0 12547 | . . . 4 ⊢ 9 ∈ ℕ0 | |
3 | 1nn0 12539 | . . . 4 ⊢ 1 ∈ ℕ0 | |
4 | 2, 3 | nn0addcli 12560 | . . 3 ⊢ (9 + 1) ∈ ℕ0 |
5 | deccl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
6 | deccl.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
7 | 4, 5, 6 | numcl 12743 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) ∈ ℕ0 |
8 | 1, 7 | eqeltri 2834 | 1 ⊢ ;𝐴𝐵 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 1c1 11153 + caddc 11155 · cmul 11157 9c9 12325 ℕ0cn0 12523 ;cdc 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-dec 12731 |
This theorem is referenced by: 10nn0 12748 3declth 12762 3decltc 12763 decleh 12765 decmul1 12794 bpoly4 16091 fsumcube 16092 3dvds2dec 16366 dec2dvds 17096 dec5dvds2 17098 2exp8 17122 2exp11 17123 2exp16 17124 prmlem2 17153 37prm 17154 43prm 17155 83prm 17156 139prm 17157 163prm 17158 317prm 17159 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 1259prm 17169 2503lem1 17170 2503lem2 17171 2503lem3 17172 2503prm 17173 4001lem1 17174 4001lem2 17175 4001lem3 17176 4001lem4 17177 4001prm 17178 slotsbhcdif 17460 slotsbhcdifOLD 17461 cnfldfunALTOLDOLD 21410 tnglemOLD 24669 quart1cl 26911 quart1lem 26912 quart1 26913 log2ublem3 27005 log2ub 27006 log2le1 27007 birthday 27011 bpos1 27341 bpos 27351 1kp2ke3k 30474 9p10ne21 30498 dp3mul10 32864 dpmul1000 32865 dpadd 32877 dpmul 32879 dpmul4 32880 hgt750lemd 34641 hgt750lem 34644 hgt750lem2 34645 hgt750leme 34651 tgoldbachgnn 34652 tgoldbachgt 34656 kur14lem9 35198 420gcd8e4 41987 12lcm5e60 41989 60lcm7e420 41991 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow5ineq2 42036 3lexlogpow5ineq5 42041 aks4d1p1 42057 sqn5i 42298 decpmulnc 42300 decpmul 42301 sqdeccom12 42302 sq3deccom12 42303 235t711 42317 ex-decpmul 42318 sq45 42657 sum9cubes 42658 resqrtvalex 43634 imsqrtvalex 43635 inductionexd 44144 fmtno3 47475 fmtno4 47476 fmtno5lem1 47477 fmtno5lem2 47478 fmtno5lem3 47479 fmtno5lem4 47480 fmtno5 47481 257prm 47485 fmtno4prmfac 47496 fmtno4nprmfac193 47498 fmtno5faclem1 47503 fmtno5faclem2 47504 fmtno5faclem3 47505 fmtno5fac 47506 fmtno5nprm 47507 139prmALT 47520 31prm 47521 127prm 47523 m7prm 47524 m11nprm 47525 11t31e341 47656 2exp340mod341 47657 341fppr2 47658 nfermltl2rev 47667 evengpoap3 47723 bgoldbachlt 47737 tgoldbachlt 47740 ackval3012 48541 ackval41a 48543 ackval41 48544 ackval42 48545 prstcocvalOLD 48872 |
Copyright terms: Public domain | W3C validator |