| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deccl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deccl.1 | ⊢ 𝐴 ∈ ℕ0 |
| deccl.2 | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| deccl | ⊢ ;𝐴𝐵 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12650 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 9nn0 12466 | . . . 4 ⊢ 9 ∈ ℕ0 | |
| 3 | 1nn0 12458 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 4 | 2, 3 | nn0addcli 12479 | . . 3 ⊢ (9 + 1) ∈ ℕ0 |
| 5 | deccl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 6 | deccl.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 7 | 4, 5, 6 | numcl 12662 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) ∈ ℕ0 |
| 8 | 1, 7 | eqeltri 2824 | 1 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 · cmul 11073 9c9 12248 ℕ0cn0 12442 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 |
| This theorem is referenced by: 10nn0 12667 3declth 12681 3decltc 12682 decleh 12684 decmul1 12713 bpoly4 16025 fsumcube 16026 3dvds2dec 16303 dec2dvds 17034 dec5dvds2 17036 2exp8 17059 2exp11 17060 2exp16 17061 prmlem2 17090 37prm 17091 43prm 17092 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 1259prm 17106 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 4001prm 17115 slotsbhcdif 17378 quart1cl 26764 quart1lem 26765 quart1 26766 log2ublem3 26858 log2ub 26859 log2le1 26860 birthday 26864 bpos1 27194 bpos 27204 1kp2ke3k 30375 9p10ne21 30399 dp3mul10 32818 dpmul1000 32819 dpadd 32831 dpmul 32833 dpmul4 32834 cos9thpiminplylem1 33772 hgt750lemd 34639 hgt750lem 34642 hgt750lem2 34643 hgt750leme 34649 tgoldbachgnn 34650 tgoldbachgt 34654 kur14lem9 35201 420gcd8e4 41994 12lcm5e60 41996 60lcm7e420 41998 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow5ineq2 42043 3lexlogpow5ineq5 42048 aks4d1p1 42064 sqn5i 42273 decpmulnc 42275 decpmul 42276 sqdeccom12 42277 sq3deccom12 42278 235t711 42293 ex-decpmul 42294 sq45 42659 sum9cubes 42660 resqrtvalex 43634 imsqrtvalex 43635 inductionexd 44144 fmtno3 47552 fmtno4 47553 fmtno5lem1 47554 fmtno5lem2 47555 fmtno5lem3 47556 fmtno5lem4 47557 fmtno5 47558 257prm 47562 fmtno4prmfac 47573 fmtno4nprmfac193 47575 fmtno5faclem1 47580 fmtno5faclem2 47581 fmtno5faclem3 47582 fmtno5fac 47583 fmtno5nprm 47584 139prmALT 47597 31prm 47598 127prm 47600 m7prm 47601 m11nprm 47602 11t31e341 47733 2exp340mod341 47734 341fppr2 47735 nfermltl2rev 47744 evengpoap3 47800 bgoldbachlt 47814 tgoldbachlt 47817 ackval3012 48681 ackval41a 48683 ackval41 48684 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |