| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deccl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deccl.1 | ⊢ 𝐴 ∈ ℕ0 |
| deccl.2 | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| deccl | ⊢ ;𝐴𝐵 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12657 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 9nn0 12473 | . . . 4 ⊢ 9 ∈ ℕ0 | |
| 3 | 1nn0 12465 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 4 | 2, 3 | nn0addcli 12486 | . . 3 ⊢ (9 + 1) ∈ ℕ0 |
| 5 | deccl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 6 | deccl.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 7 | 4, 5, 6 | numcl 12669 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) ∈ ℕ0 |
| 8 | 1, 7 | eqeltri 2825 | 1 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 · cmul 11080 9c9 12255 ℕ0cn0 12449 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: 10nn0 12674 3declth 12688 3decltc 12689 decleh 12691 decmul1 12720 bpoly4 16032 fsumcube 16033 3dvds2dec 16310 dec2dvds 17041 dec5dvds2 17043 2exp8 17066 2exp11 17067 2exp16 17068 prmlem2 17097 37prm 17098 43prm 17099 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 1259prm 17113 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 4001prm 17122 slotsbhcdif 17385 quart1cl 26771 quart1lem 26772 quart1 26773 log2ublem3 26865 log2ub 26866 log2le1 26867 birthday 26871 bpos1 27201 bpos 27211 1kp2ke3k 30382 9p10ne21 30406 dp3mul10 32825 dpmul1000 32826 dpadd 32838 dpmul 32840 dpmul4 32841 cos9thpiminplylem1 33779 hgt750lemd 34646 hgt750lem 34649 hgt750lem2 34650 hgt750leme 34656 tgoldbachgnn 34657 tgoldbachgt 34661 kur14lem9 35208 420gcd8e4 42001 12lcm5e60 42003 60lcm7e420 42005 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow5ineq2 42050 3lexlogpow5ineq5 42055 aks4d1p1 42071 sqn5i 42280 decpmulnc 42282 decpmul 42283 sqdeccom12 42284 sq3deccom12 42285 235t711 42300 ex-decpmul 42301 sq45 42666 sum9cubes 42667 resqrtvalex 43641 imsqrtvalex 43642 inductionexd 44151 fmtno3 47556 fmtno4 47557 fmtno5lem1 47558 fmtno5lem2 47559 fmtno5lem3 47560 fmtno5lem4 47561 fmtno5 47562 257prm 47566 fmtno4prmfac 47577 fmtno4nprmfac193 47579 fmtno5faclem1 47584 fmtno5faclem2 47585 fmtno5faclem3 47586 fmtno5fac 47587 fmtno5nprm 47588 139prmALT 47601 31prm 47602 127prm 47604 m7prm 47605 m11nprm 47606 11t31e341 47737 2exp340mod341 47738 341fppr2 47739 nfermltl2rev 47748 evengpoap3 47804 bgoldbachlt 47818 tgoldbachlt 47821 ackval3012 48685 ackval41a 48687 ackval41 48688 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |