Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Structured version   Visualization version   GIF version

Theorem pellfund14 42909
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 42871 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+)
2 pellfundrp 42899 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
32adantr 480 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ+)
4 pellfundne1 42900 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1)
54adantr 480 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 1)
6 reglogcl 42901 . . . 4 ((𝐴 ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
71, 3, 5, 6syl3anc 1373 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
87flcld 13838 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
9 pell14qrre 42868 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
109recnd 11289 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
113, 8rpexpcld 14286 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1211rpcnd 13079 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
138znegcld 12724 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
143, 13rpexpcld 14286 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1514rpcnd 13079 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
1614rpne0d 13082 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ≠ 0)
17 simpl 482 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
18 pell1qrss14 42879 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellfundex 42897 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
2018, 19sseldd 3984 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
2120adantr 480 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
22 pell14qrexpcl 42878 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (PellFund‘𝐷) ∈ (Pell14QR‘𝐷) ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
2317, 21, 13, 22syl3anc 1373 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
24 pell14qrmulcl 42874 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
2523, 24mpd3an3 1464 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
26 1rp 13038 . . . . . . . . . 10 1 ∈ ℝ+
2726a1i 11 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ+)
28 modge0 13919 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
297, 27, 28syl2anc 584 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
307recnd 11289 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℂ)
318zcnd 12723 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℂ)
3230, 31negsubd 11626 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
33 modfrac 13924 . . . . . . . . . 10 (((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
347, 33syl 17 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
3532, 34eqtr4d 2780 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
3629, 35breqtrrd 5171 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
37 reglog1 42907 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
383, 5, 37syl2anc 584 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
39 reglogmul 42904 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
401, 14, 3, 5, 39syl112anc 1376 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
41 reglogexpbas 42908 . . . . . . . . . 10 ((-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4213, 3, 5, 41syl12anc 837 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4342oveq2d 7447 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4440, 43eqtrd 2777 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4536, 38, 443brtr4d 5175 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))))
461, 14rpmulcld 13093 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+)
47 pellfundgt1 42894 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
4847adantr 480 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 < (PellFund‘𝐷))
49 reglogleb 42903 . . . . . . 7 (((1 ∈ ℝ+ ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5027, 46, 3, 48, 49syl22anc 839 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5145, 50mpbird 257 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
52 modlt 13920 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
537, 27, 52syl2anc 584 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
5435, 53eqbrtrd 5165 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) < 1)
55 reglogbas 42906 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
563, 5, 55syl2anc 584 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
5754, 44, 563brtr4d 5175 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))))
58 reglogltb 42902 . . . . . . 7 ((((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
5946, 3, 3, 48, 58syl22anc 839 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
6057, 59mpbird 257 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))
61 pellfund14gap 42898 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷) ∧ (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6217, 25, 51, 60, 61syl112anc 1376 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6331negidd 11610 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = 0)
6463oveq2d 7447 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = ((PellFund‘𝐷)↑0))
653rpcnd 13079 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℂ)
663rpne0d 13082 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 0)
67 expaddz 14147 . . . . . 6 ((((PellFund‘𝐷) ∈ ℂ ∧ (PellFund‘𝐷) ≠ 0) ∧ ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6865, 66, 8, 13, 67syl22anc 839 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6965exp0d 14180 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑0) = 1)
7064, 68, 693eqtr3rd 2786 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7162, 70eqtrd 2777 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7210, 12, 15, 16, 71mulcan2ad 11899 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
73 oveq2 7439 . . 3 (𝑥 = (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) → ((PellFund‘𝐷)↑𝑥) = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
7473rspceeqv 3645 . 2 (((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
758, 72, 74syl2anc 584 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cdif 3948   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  cz 12613  +crp 13034  cfl 13830   mod cmo 13909  cexp 14102  logclog 26596  NNcsquarenn 42847  Pell1QRcpell1qr 42848  Pell14QRcpell14qr 42850  PellFundcpellfund 42851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-numer 16772  df-denom 16773  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-squarenn 42852  df-pell1qr 42853  df-pell14qr 42854  df-pell1234qr 42855  df-pellfund 42856
This theorem is referenced by:  pellfund14b  42910
  Copyright terms: Public domain W3C validator