Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Structured version   Visualization version   GIF version

Theorem pellfund14 40423
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 40385 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+)
2 pellfundrp 40413 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
32adantr 484 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ+)
4 pellfundne1 40414 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1)
54adantr 484 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 1)
6 reglogcl 40415 . . . 4 ((𝐴 ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
71, 3, 5, 6syl3anc 1373 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
87flcld 13373 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
9 pell14qrre 40382 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
109recnd 10861 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
113, 8rpexpcld 13814 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1211rpcnd 12630 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
138znegcld 12284 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
143, 13rpexpcld 13814 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1514rpcnd 12630 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
1614rpne0d 12633 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ≠ 0)
17 simpl 486 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
18 pell1qrss14 40393 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellfundex 40411 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
2018, 19sseldd 3902 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
2120adantr 484 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
22 pell14qrexpcl 40392 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (PellFund‘𝐷) ∈ (Pell14QR‘𝐷) ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
2317, 21, 13, 22syl3anc 1373 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
24 pell14qrmulcl 40388 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
2523, 24mpd3an3 1464 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
26 1rp 12590 . . . . . . . . . 10 1 ∈ ℝ+
2726a1i 11 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ+)
28 modge0 13452 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
297, 27, 28syl2anc 587 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
307recnd 10861 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℂ)
318zcnd 12283 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℂ)
3230, 31negsubd 11195 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
33 modfrac 13457 . . . . . . . . . 10 (((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
347, 33syl 17 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
3532, 34eqtr4d 2780 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
3629, 35breqtrrd 5081 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
37 reglog1 40421 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
383, 5, 37syl2anc 587 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
39 reglogmul 40418 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
401, 14, 3, 5, 39syl112anc 1376 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
41 reglogexpbas 40422 . . . . . . . . . 10 ((-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4213, 3, 5, 41syl12anc 837 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4342oveq2d 7229 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4440, 43eqtrd 2777 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4536, 38, 443brtr4d 5085 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))))
461, 14rpmulcld 12644 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+)
47 pellfundgt1 40408 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
4847adantr 484 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 < (PellFund‘𝐷))
49 reglogleb 40417 . . . . . . 7 (((1 ∈ ℝ+ ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5027, 46, 3, 48, 49syl22anc 839 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5145, 50mpbird 260 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
52 modlt 13453 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
537, 27, 52syl2anc 587 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
5435, 53eqbrtrd 5075 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) < 1)
55 reglogbas 40420 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
563, 5, 55syl2anc 587 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
5754, 44, 563brtr4d 5085 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))))
58 reglogltb 40416 . . . . . . 7 ((((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
5946, 3, 3, 48, 58syl22anc 839 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
6057, 59mpbird 260 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))
61 pellfund14gap 40412 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷) ∧ (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6217, 25, 51, 60, 61syl112anc 1376 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6331negidd 11179 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = 0)
6463oveq2d 7229 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = ((PellFund‘𝐷)↑0))
653rpcnd 12630 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℂ)
663rpne0d 12633 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 0)
67 expaddz 13679 . . . . . 6 ((((PellFund‘𝐷) ∈ ℂ ∧ (PellFund‘𝐷) ≠ 0) ∧ ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6865, 66, 8, 13, 67syl22anc 839 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6965exp0d 13710 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑0) = 1)
7064, 68, 693eqtr3rd 2786 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7162, 70eqtrd 2777 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7210, 12, 15, 16, 71mulcan2ad 11468 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
73 oveq2 7221 . . 3 (𝑥 = (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) → ((PellFund‘𝐷)↑𝑥) = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
7473rspceeqv 3552 . 2 (((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
758, 72, 74syl2anc 587 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wrex 3062  cdif 3863   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062  -cneg 11063   / cdiv 11489  cn 11830  cz 12176  +crp 12586  cfl 13365   mod cmo 13442  cexp 13635  logclog 25443  NNcsquarenn 40361  Pell1QRcpell1qr 40362  Pell14QRcpell14qr 40364  PellFundcpellfund 40365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-numer 16291  df-denom 16292  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-squarenn 40366  df-pell1qr 40367  df-pell14qr 40368  df-pell1234qr 40369  df-pellfund 40370
This theorem is referenced by:  pellfund14b  40424
  Copyright terms: Public domain W3C validator