Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Structured version   Visualization version   GIF version

Theorem pellfund14 40720
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 40682 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+)
2 pellfundrp 40710 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
32adantr 481 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ+)
4 pellfundne1 40711 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1)
54adantr 481 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 1)
6 reglogcl 40712 . . . 4 ((𝐴 ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
71, 3, 5, 6syl3anc 1370 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
87flcld 13518 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
9 pell14qrre 40679 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
109recnd 11003 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
113, 8rpexpcld 13962 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1211rpcnd 12774 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
138znegcld 12428 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
143, 13rpexpcld 13962 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1514rpcnd 12774 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
1614rpne0d 12777 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ≠ 0)
17 simpl 483 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
18 pell1qrss14 40690 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellfundex 40708 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
2018, 19sseldd 3922 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
2120adantr 481 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
22 pell14qrexpcl 40689 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (PellFund‘𝐷) ∈ (Pell14QR‘𝐷) ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
2317, 21, 13, 22syl3anc 1370 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
24 pell14qrmulcl 40685 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
2523, 24mpd3an3 1461 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
26 1rp 12734 . . . . . . . . . 10 1 ∈ ℝ+
2726a1i 11 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ+)
28 modge0 13599 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
297, 27, 28syl2anc 584 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
307recnd 11003 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℂ)
318zcnd 12427 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℂ)
3230, 31negsubd 11338 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
33 modfrac 13604 . . . . . . . . . 10 (((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
347, 33syl 17 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
3532, 34eqtr4d 2781 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
3629, 35breqtrrd 5102 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
37 reglog1 40718 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
383, 5, 37syl2anc 584 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
39 reglogmul 40715 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
401, 14, 3, 5, 39syl112anc 1373 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
41 reglogexpbas 40719 . . . . . . . . . 10 ((-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4213, 3, 5, 41syl12anc 834 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4342oveq2d 7291 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4440, 43eqtrd 2778 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4536, 38, 443brtr4d 5106 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))))
461, 14rpmulcld 12788 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+)
47 pellfundgt1 40705 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
4847adantr 481 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 < (PellFund‘𝐷))
49 reglogleb 40714 . . . . . . 7 (((1 ∈ ℝ+ ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5027, 46, 3, 48, 49syl22anc 836 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5145, 50mpbird 256 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
52 modlt 13600 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
537, 27, 52syl2anc 584 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
5435, 53eqbrtrd 5096 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) < 1)
55 reglogbas 40717 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
563, 5, 55syl2anc 584 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
5754, 44, 563brtr4d 5106 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))))
58 reglogltb 40713 . . . . . . 7 ((((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
5946, 3, 3, 48, 58syl22anc 836 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
6057, 59mpbird 256 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))
61 pellfund14gap 40709 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷) ∧ (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6217, 25, 51, 60, 61syl112anc 1373 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6331negidd 11322 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = 0)
6463oveq2d 7291 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = ((PellFund‘𝐷)↑0))
653rpcnd 12774 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℂ)
663rpne0d 12777 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 0)
67 expaddz 13827 . . . . . 6 ((((PellFund‘𝐷) ∈ ℂ ∧ (PellFund‘𝐷) ≠ 0) ∧ ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6865, 66, 8, 13, 67syl22anc 836 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6965exp0d 13858 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑0) = 1)
7064, 68, 693eqtr3rd 2787 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7162, 70eqtrd 2778 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7210, 12, 15, 16, 71mulcan2ad 11611 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
73 oveq2 7283 . . 3 (𝑥 = (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) → ((PellFund‘𝐷)↑𝑥) = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
7473rspceeqv 3575 . 2 (((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
758, 72, 74syl2anc 584 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  cz 12319  +crp 12730  cfl 13510   mod cmo 13589  cexp 13782  logclog 25710  NNcsquarenn 40658  Pell1QRcpell1qr 40659  Pell14QRcpell14qr 40661  PellFundcpellfund 40662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-squarenn 40663  df-pell1qr 40664  df-pell14qr 40665  df-pell1234qr 40666  df-pellfund 40667
This theorem is referenced by:  pellfund14b  40721
  Copyright terms: Public domain W3C validator