Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Structured version   Visualization version   GIF version

Theorem pellfund14 42555
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 42517 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+)
2 pellfundrp 42545 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
32adantr 479 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ+)
4 pellfundne1 42546 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1)
54adantr 479 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 1)
6 reglogcl 42547 . . . 4 ((𝐴 ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
71, 3, 5, 6syl3anc 1368 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
87flcld 13818 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
9 pell14qrre 42514 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
109recnd 11292 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
113, 8rpexpcld 14264 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1211rpcnd 13072 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
138znegcld 12720 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
143, 13rpexpcld 14264 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1514rpcnd 13072 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
1614rpne0d 13075 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ≠ 0)
17 simpl 481 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
18 pell1qrss14 42525 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellfundex 42543 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
2018, 19sseldd 3980 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
2120adantr 479 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
22 pell14qrexpcl 42524 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (PellFund‘𝐷) ∈ (Pell14QR‘𝐷) ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
2317, 21, 13, 22syl3anc 1368 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
24 pell14qrmulcl 42520 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
2523, 24mpd3an3 1459 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
26 1rp 13032 . . . . . . . . . 10 1 ∈ ℝ+
2726a1i 11 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ+)
28 modge0 13899 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
297, 27, 28syl2anc 582 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
307recnd 11292 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℂ)
318zcnd 12719 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℂ)
3230, 31negsubd 11627 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
33 modfrac 13904 . . . . . . . . . 10 (((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
347, 33syl 17 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
3532, 34eqtr4d 2769 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
3629, 35breqtrrd 5181 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
37 reglog1 42553 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
383, 5, 37syl2anc 582 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
39 reglogmul 42550 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
401, 14, 3, 5, 39syl112anc 1371 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
41 reglogexpbas 42554 . . . . . . . . . 10 ((-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4213, 3, 5, 41syl12anc 835 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4342oveq2d 7440 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4440, 43eqtrd 2766 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4536, 38, 443brtr4d 5185 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))))
461, 14rpmulcld 13086 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+)
47 pellfundgt1 42540 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
4847adantr 479 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 < (PellFund‘𝐷))
49 reglogleb 42549 . . . . . . 7 (((1 ∈ ℝ+ ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5027, 46, 3, 48, 49syl22anc 837 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5145, 50mpbird 256 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
52 modlt 13900 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
537, 27, 52syl2anc 582 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
5435, 53eqbrtrd 5175 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) < 1)
55 reglogbas 42552 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
563, 5, 55syl2anc 582 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
5754, 44, 563brtr4d 5185 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))))
58 reglogltb 42548 . . . . . . 7 ((((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
5946, 3, 3, 48, 58syl22anc 837 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
6057, 59mpbird 256 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))
61 pellfund14gap 42544 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷) ∧ (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6217, 25, 51, 60, 61syl112anc 1371 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6331negidd 11611 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = 0)
6463oveq2d 7440 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = ((PellFund‘𝐷)↑0))
653rpcnd 13072 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℂ)
663rpne0d 13075 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 0)
67 expaddz 14126 . . . . . 6 ((((PellFund‘𝐷) ∈ ℂ ∧ (PellFund‘𝐷) ≠ 0) ∧ ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6865, 66, 8, 13, 67syl22anc 837 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6965exp0d 14159 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑0) = 1)
7064, 68, 693eqtr3rd 2775 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7162, 70eqtrd 2766 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7210, 12, 15, 16, 71mulcan2ad 11900 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
73 oveq2 7432 . . 3 (𝑥 = (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) → ((PellFund‘𝐷)↑𝑥) = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
7473rspceeqv 3630 . 2 (((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
758, 72, 74syl2anc 582 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cdif 3944   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  cmin 11494  -cneg 11495   / cdiv 11921  cn 12264  cz 12610  +crp 13028  cfl 13810   mod cmo 13889  cexp 14081  logclog 26581  NNcsquarenn 42493  Pell1QRcpell1qr 42494  Pell14QRcpell14qr 42496  PellFundcpellfund 42497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-acn 9985  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-sin 16071  df-cos 16072  df-pi 16074  df-dvds 16257  df-gcd 16495  df-numer 16737  df-denom 16738  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887  df-log 26583  df-squarenn 42498  df-pell1qr 42499  df-pell14qr 42500  df-pell1234qr 42501  df-pellfund 42502
This theorem is referenced by:  pellfund14b  42556
  Copyright terms: Public domain W3C validator