Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecfund Structured version   Visualization version   GIF version

Theorem rmspecfund 42920
Description: The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecfund (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))

Proof of Theorem rmspecfund
StepHypRef Expression
1 rmspecnonsq 42918 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2 eluzelz 12888 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
3 zsqcl 14169 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
42, 3syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
54zred 12722 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
6 1red 11262 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
75, 6resubcld 11691 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
8 sq1 14234 . . . . . . . . . . . . 13 (1↑2) = 1
98a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) = 1)
10 eluz2b2 12963 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
1110simprbi 496 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
12 eluzelre 12889 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
13 0le1 11786 . . . . . . . . . . . . . . 15 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
15 eluzge2nn0 12929 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1615nn0ge0d 12590 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
176, 12, 14, 16lt2sqd 14295 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
1811, 17mpbid 232 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
199, 18eqbrtrrd 5167 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
206, 5posdifd 11850 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2119, 20mpbid 232 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
227, 21elrpd 13074 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
2322rpsqrtcld 15450 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
2423rpred 13077 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
2524recnd 11289 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
2625mulridd 11278 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((√‘((𝐴↑2) − 1)) · 1) = (√‘((𝐴↑2) − 1)))
2726oveq2d 7447 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
28 pell1qrss14 42879 . . . . . 6 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
291, 28syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
30 1nn0 12542 . . . . . . 7 1 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℕ0)
328oveq2i 7442 . . . . . . . . 9 (((𝐴↑2) − 1) · (1↑2)) = (((𝐴↑2) − 1) · 1)
337recnd 11289 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3433mulridd 11278 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · 1) = ((𝐴↑2) − 1))
3532, 34eqtrid 2789 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · (1↑2)) = ((𝐴↑2) − 1))
3635oveq2d 7447 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = ((𝐴↑2) − ((𝐴↑2) − 1)))
375recnd 11289 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
38 1cnd 11256 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
3937, 38nncand 11625 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((𝐴↑2) − 1)) = 1)
4036, 39eqtrd 2777 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1)
41 pellqrexplicit 42888 . . . . . 6 (((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
421, 15, 31, 40, 41syl31anc 1375 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
4329, 42sseldd 3984 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell14QR‘((𝐴↑2) − 1)))
4427, 43eqeltrrd 2842 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)))
456, 24readdcld 11290 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
4612, 24readdcld 11290 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
476, 23ltaddrpd 13110 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (1 + (√‘((𝐴↑2) − 1))))
486, 12, 24, 11ltadd1dd 11874 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) < (𝐴 + (√‘((𝐴↑2) − 1))))
496, 45, 46, 47, 48lttrd 11422 . . 3 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴 + (√‘((𝐴↑2) − 1))))
50 pellfundlb 42895 . . 3 ((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)) ∧ 1 < (𝐴 + (√‘((𝐴↑2) − 1)))) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
511, 44, 49, 50syl3anc 1373 . 2 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
5237, 38npcand 11624 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) + 1) = (𝐴↑2))
5352fveq2d 6910 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = (√‘(𝐴↑2)))
5412, 16sqrtsqd 15458 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(𝐴↑2)) = 𝐴)
5553, 54eqtrd 2777 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = 𝐴)
5655oveq1d 7446 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
57 pellfundge 42893 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
581, 57syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
5956, 58eqbrtrrd 5167 . 2 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
60 pellfundre 42892 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
611, 60syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
6261, 46letri3d 11403 . 2 (𝐴 ∈ (ℤ‘2) → ((PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))) ↔ ((PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))))
6351, 59, 62mpbir2and 713 1 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cdif 3948  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  cexp 14102  csqrt 15272  NNcsquarenn 42847  Pell1QRcpell1qr 42848  Pell14QRcpell14qr 42850  PellFundcpellfund 42851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ico 13393  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-numer 16772  df-denom 16773  df-squarenn 42852  df-pell1qr 42853  df-pell14qr 42854  df-pell1234qr 42855  df-pellfund 42856
This theorem is referenced by:  rmxyelqirr  42921  rmxyelqirrOLD  42922  rmxycomplete  42929  rmbaserp  42931
  Copyright terms: Public domain W3C validator