Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecfund Structured version   Visualization version   GIF version

Theorem rmspecfund 42896
Description: The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecfund (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))

Proof of Theorem rmspecfund
StepHypRef Expression
1 rmspecnonsq 42894 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2 eluzelz 12885 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
3 zsqcl 14165 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
42, 3syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
54zred 12719 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
6 1red 11259 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
75, 6resubcld 11688 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
8 sq1 14230 . . . . . . . . . . . . 13 (1↑2) = 1
98a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) = 1)
10 eluz2b2 12960 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
1110simprbi 496 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
12 eluzelre 12886 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
13 0le1 11783 . . . . . . . . . . . . . . 15 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
15 eluzge2nn0 12926 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1615nn0ge0d 12587 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
176, 12, 14, 16lt2sqd 14291 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
1811, 17mpbid 232 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
199, 18eqbrtrrd 5171 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
206, 5posdifd 11847 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2119, 20mpbid 232 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
227, 21elrpd 13071 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
2322rpsqrtcld 15446 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
2423rpred 13074 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
2524recnd 11286 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
2625mulridd 11275 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((√‘((𝐴↑2) − 1)) · 1) = (√‘((𝐴↑2) − 1)))
2726oveq2d 7446 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
28 pell1qrss14 42855 . . . . . 6 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
291, 28syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
30 1nn0 12539 . . . . . . 7 1 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℕ0)
328oveq2i 7441 . . . . . . . . 9 (((𝐴↑2) − 1) · (1↑2)) = (((𝐴↑2) − 1) · 1)
337recnd 11286 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3433mulridd 11275 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · 1) = ((𝐴↑2) − 1))
3532, 34eqtrid 2786 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · (1↑2)) = ((𝐴↑2) − 1))
3635oveq2d 7446 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = ((𝐴↑2) − ((𝐴↑2) − 1)))
375recnd 11286 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
38 1cnd 11253 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
3937, 38nncand 11622 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((𝐴↑2) − 1)) = 1)
4036, 39eqtrd 2774 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1)
41 pellqrexplicit 42864 . . . . . 6 (((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
421, 15, 31, 40, 41syl31anc 1372 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
4329, 42sseldd 3995 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell14QR‘((𝐴↑2) − 1)))
4427, 43eqeltrrd 2839 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)))
456, 24readdcld 11287 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
4612, 24readdcld 11287 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
476, 23ltaddrpd 13107 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (1 + (√‘((𝐴↑2) − 1))))
486, 12, 24, 11ltadd1dd 11871 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) < (𝐴 + (√‘((𝐴↑2) − 1))))
496, 45, 46, 47, 48lttrd 11419 . . 3 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴 + (√‘((𝐴↑2) − 1))))
50 pellfundlb 42871 . . 3 ((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)) ∧ 1 < (𝐴 + (√‘((𝐴↑2) − 1)))) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
511, 44, 49, 50syl3anc 1370 . 2 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
5237, 38npcand 11621 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) + 1) = (𝐴↑2))
5352fveq2d 6910 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = (√‘(𝐴↑2)))
5412, 16sqrtsqd 15454 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(𝐴↑2)) = 𝐴)
5553, 54eqtrd 2774 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = 𝐴)
5655oveq1d 7445 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
57 pellfundge 42869 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
581, 57syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
5956, 58eqbrtrrd 5171 . 2 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
60 pellfundre 42868 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
611, 60syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
6261, 46letri3d 11400 . 2 (𝐴 ∈ (ℤ‘2) → ((PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))) ↔ ((PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))))
6351, 59, 62mpbir2and 713 1 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cdif 3959  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  cexp 14098  csqrt 15268  NNcsquarenn 42823  Pell1QRcpell1qr 42824  Pell14QRcpell14qr 42826  PellFundcpellfund 42827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-ico 13389  df-fz 13544  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-numer 16768  df-denom 16769  df-squarenn 42828  df-pell1qr 42829  df-pell14qr 42830  df-pell1234qr 42831  df-pellfund 42832
This theorem is referenced by:  rmxyelqirr  42897  rmxyelqirrOLD  42898  rmxycomplete  42905  rmbaserp  42907
  Copyright terms: Public domain W3C validator