Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aacjcl | Structured version Visualization version GIF version |
Description: The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
aacjcl | ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 14512 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → (∗‘𝐴) ∈ ℂ) |
3 | fveq2 6658 | . . . . . . 7 ⊢ ((𝑓‘𝐴) = 0 → (∗‘(𝑓‘𝐴)) = (∗‘0)) | |
4 | cj0 14565 | . . . . . . 7 ⊢ (∗‘0) = 0 | |
5 | 3, 4 | eqtrdi 2809 | . . . . . 6 ⊢ ((𝑓‘𝐴) = 0 → (∗‘(𝑓‘𝐴)) = 0) |
6 | difss 4037 | . . . . . . . . . 10 ⊢ ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℤ) | |
7 | zssre 12027 | . . . . . . . . . . 11 ⊢ ℤ ⊆ ℝ | |
8 | ax-resscn 10632 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
9 | plyss 24895 | . . . . . . . . . . 11 ⊢ ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ)) | |
10 | 7, 8, 9 | mp2an 691 | . . . . . . . . . 10 ⊢ (Poly‘ℤ) ⊆ (Poly‘ℝ) |
11 | 6, 10 | sstri 3901 | . . . . . . . . 9 ⊢ ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℝ) |
12 | 11 | sseli 3888 | . . . . . . . 8 ⊢ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℝ)) |
13 | id 22 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
14 | plyrecj 24975 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝑓‘𝐴)) = (𝑓‘(∗‘𝐴))) | |
15 | 12, 13, 14 | syl2anr 599 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → (∗‘(𝑓‘𝐴)) = (𝑓‘(∗‘𝐴))) |
16 | 15 | eqeq1d 2760 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((∗‘(𝑓‘𝐴)) = 0 ↔ (𝑓‘(∗‘𝐴)) = 0)) |
17 | 5, 16 | syl5ib 247 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((𝑓‘𝐴) = 0 → (𝑓‘(∗‘𝐴)) = 0)) |
18 | 17 | reximdva 3198 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) |
19 | 18 | imp 410 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0) |
20 | 2, 19 | jca 515 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) |
21 | elaa 25011 | . 2 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
22 | elaa 25011 | . 2 ⊢ ((∗‘𝐴) ∈ 𝔸 ↔ ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) | |
23 | 20, 21, 22 | 3imtr4i 295 | 1 ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ∖ cdif 3855 ⊆ wss 3858 {csn 4522 ‘cfv 6335 ℂcc 10573 ℝcr 10574 0cc0 10575 ℤcz 12020 ∗ccj 14503 0𝑝c0p 24369 Polycply 24880 𝔸caa 25009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-rlim 14894 df-sum 15091 df-0p 24370 df-ply 24884 df-coe 24886 df-dgr 24887 df-aa 25010 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |