| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aacjcl | Structured version Visualization version GIF version | ||
| Description: The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| aacjcl | ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl 15047 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → (∗‘𝐴) ∈ ℂ) |
| 3 | fveq2 6840 | . . . . . . 7 ⊢ ((𝑓‘𝐴) = 0 → (∗‘(𝑓‘𝐴)) = (∗‘0)) | |
| 4 | cj0 15100 | . . . . . . 7 ⊢ (∗‘0) = 0 | |
| 5 | 3, 4 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝑓‘𝐴) = 0 → (∗‘(𝑓‘𝐴)) = 0) |
| 6 | difss 4095 | . . . . . . . . . 10 ⊢ ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℤ) | |
| 7 | zssre 12512 | . . . . . . . . . . 11 ⊢ ℤ ⊆ ℝ | |
| 8 | ax-resscn 11101 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
| 9 | plyss 26080 | . . . . . . . . . . 11 ⊢ ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ)) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . . . . . . . 10 ⊢ (Poly‘ℤ) ⊆ (Poly‘ℝ) |
| 11 | 6, 10 | sstri 3953 | . . . . . . . . 9 ⊢ ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℝ) |
| 12 | 11 | sseli 3939 | . . . . . . . 8 ⊢ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℝ)) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 14 | plyrecj 26163 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝑓‘𝐴)) = (𝑓‘(∗‘𝐴))) | |
| 15 | 12, 13, 14 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → (∗‘(𝑓‘𝐴)) = (𝑓‘(∗‘𝐴))) |
| 16 | 15 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((∗‘(𝑓‘𝐴)) = 0 ↔ (𝑓‘(∗‘𝐴)) = 0)) |
| 17 | 5, 16 | imbitrid 244 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((𝑓‘𝐴) = 0 → (𝑓‘(∗‘𝐴)) = 0)) |
| 18 | 17 | reximdva 3146 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) |
| 19 | 18 | imp 406 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0) |
| 20 | 2, 19 | jca 511 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) |
| 21 | elaa 26200 | . 2 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
| 22 | elaa 26200 | . 2 ⊢ ((∗‘𝐴) ∈ 𝔸 ↔ ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) | |
| 23 | 20, 21, 22 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 ‘cfv 6499 ℂcc 11042 ℝcr 11043 0cc0 11044 ℤcz 12505 ∗ccj 15038 0𝑝c0p 25546 Polycply 26065 𝔸caa 26198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-0p 25547 df-ply 26069 df-coe 26071 df-dgr 26072 df-aa 26199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |