MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aacjcl Structured version   Visualization version   GIF version

Theorem aacjcl 26285
Description: The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
aacjcl (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸)

Proof of Theorem aacjcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cjcl 15122 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
21adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → (∗‘𝐴) ∈ ℂ)
3 fveq2 6875 . . . . . . 7 ((𝑓𝐴) = 0 → (∗‘(𝑓𝐴)) = (∗‘0))
4 cj0 15175 . . . . . . 7 (∗‘0) = 0
53, 4eqtrdi 2786 . . . . . 6 ((𝑓𝐴) = 0 → (∗‘(𝑓𝐴)) = 0)
6 difss 4111 . . . . . . . . . 10 ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℤ)
7 zssre 12593 . . . . . . . . . . 11 ℤ ⊆ ℝ
8 ax-resscn 11184 . . . . . . . . . . 11 ℝ ⊆ ℂ
9 plyss 26154 . . . . . . . . . . 11 ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ))
107, 8, 9mp2an 692 . . . . . . . . . 10 (Poly‘ℤ) ⊆ (Poly‘ℝ)
116, 10sstri 3968 . . . . . . . . 9 ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℝ)
1211sseli 3954 . . . . . . . 8 (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℝ))
13 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 plyrecj 26237 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝑓𝐴)) = (𝑓‘(∗‘𝐴)))
1512, 13, 14syl2anr 597 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → (∗‘(𝑓𝐴)) = (𝑓‘(∗‘𝐴)))
1615eqeq1d 2737 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((∗‘(𝑓𝐴)) = 0 ↔ (𝑓‘(∗‘𝐴)) = 0))
175, 16imbitrid 244 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((𝑓𝐴) = 0 → (𝑓‘(∗‘𝐴)) = 0))
1817reximdva 3153 . . . 4 (𝐴 ∈ ℂ → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
1918imp 406 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)
202, 19jca 511 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
21 elaa 26274 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
22 elaa 26274 . 2 ((∗‘𝐴) ∈ 𝔸 ↔ ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
2320, 21, 223imtr4i 292 1 (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  cdif 3923  wss 3926  {csn 4601  cfv 6530  cc 11125  cr 11126  0cc0 11127  cz 12586  ccj 15113  0𝑝c0p 25620  Polycply 26139  𝔸caa 26272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-0p 25621  df-ply 26143  df-coe 26145  df-dgr 26146  df-aa 26273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator