MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aacjcl Structured version   Visualization version   GIF version

Theorem aacjcl 24831
Description: The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
aacjcl (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸)

Proof of Theorem aacjcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cjcl 14454 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
21adantr 481 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → (∗‘𝐴) ∈ ℂ)
3 fveq2 6667 . . . . . . 7 ((𝑓𝐴) = 0 → (∗‘(𝑓𝐴)) = (∗‘0))
4 cj0 14507 . . . . . . 7 (∗‘0) = 0
53, 4syl6eq 2877 . . . . . 6 ((𝑓𝐴) = 0 → (∗‘(𝑓𝐴)) = 0)
6 difss 4112 . . . . . . . . . 10 ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℤ)
7 zssre 11977 . . . . . . . . . . 11 ℤ ⊆ ℝ
8 ax-resscn 10583 . . . . . . . . . . 11 ℝ ⊆ ℂ
9 plyss 24704 . . . . . . . . . . 11 ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ))
107, 8, 9mp2an 688 . . . . . . . . . 10 (Poly‘ℤ) ⊆ (Poly‘ℝ)
116, 10sstri 3980 . . . . . . . . 9 ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℝ)
1211sseli 3967 . . . . . . . 8 (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℝ))
13 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 plyrecj 24784 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝑓𝐴)) = (𝑓‘(∗‘𝐴)))
1512, 13, 14syl2anr 596 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → (∗‘(𝑓𝐴)) = (𝑓‘(∗‘𝐴)))
1615eqeq1d 2828 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((∗‘(𝑓𝐴)) = 0 ↔ (𝑓‘(∗‘𝐴)) = 0))
175, 16syl5ib 245 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((𝑓𝐴) = 0 → (𝑓‘(∗‘𝐴)) = 0))
1817reximdva 3279 . . . 4 (𝐴 ∈ ℂ → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
1918imp 407 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)
202, 19jca 512 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
21 elaa 24820 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
22 elaa 24820 . 2 ((∗‘𝐴) ∈ 𝔸 ↔ ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
2320, 21, 223imtr4i 293 1 (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wrex 3144  cdif 3937  wss 3940  {csn 4564  cfv 6352  cc 10524  cr 10525  0cc0 10526  cz 11970  ccj 14445  0𝑝c0p 24185  Polycply 24689  𝔸caa 24818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-rlim 14836  df-sum 15033  df-0p 24186  df-ply 24693  df-coe 24695  df-dgr 24696  df-aa 24819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator