MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aacjcl Structured version   Visualization version   GIF version

Theorem aacjcl 25592
Description: The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
aacjcl (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸)

Proof of Theorem aacjcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cjcl 14915 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
21adantr 482 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → (∗‘𝐴) ∈ ℂ)
3 fveq2 6829 . . . . . . 7 ((𝑓𝐴) = 0 → (∗‘(𝑓𝐴)) = (∗‘0))
4 cj0 14968 . . . . . . 7 (∗‘0) = 0
53, 4eqtrdi 2793 . . . . . 6 ((𝑓𝐴) = 0 → (∗‘(𝑓𝐴)) = 0)
6 difss 4082 . . . . . . . . . 10 ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℤ)
7 zssre 12431 . . . . . . . . . . 11 ℤ ⊆ ℝ
8 ax-resscn 11033 . . . . . . . . . . 11 ℝ ⊆ ℂ
9 plyss 25465 . . . . . . . . . . 11 ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ))
107, 8, 9mp2an 690 . . . . . . . . . 10 (Poly‘ℤ) ⊆ (Poly‘ℝ)
116, 10sstri 3944 . . . . . . . . 9 ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℝ)
1211sseli 3931 . . . . . . . 8 (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℝ))
13 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 plyrecj 25545 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝑓𝐴)) = (𝑓‘(∗‘𝐴)))
1512, 13, 14syl2anr 598 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → (∗‘(𝑓𝐴)) = (𝑓‘(∗‘𝐴)))
1615eqeq1d 2739 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((∗‘(𝑓𝐴)) = 0 ↔ (𝑓‘(∗‘𝐴)) = 0))
175, 16syl5ib 244 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((𝑓𝐴) = 0 → (𝑓‘(∗‘𝐴)) = 0))
1817reximdva 3162 . . . 4 (𝐴 ∈ ℂ → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
1918imp 408 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)
202, 19jca 513 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
21 elaa 25581 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
22 elaa 25581 . 2 ((∗‘𝐴) ∈ 𝔸 ↔ ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0))
2320, 21, 223imtr4i 292 1 (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wrex 3071  cdif 3898  wss 3901  {csn 4577  cfv 6483  cc 10974  cr 10975  0cc0 10976  cz 12424  ccj 14906  0𝑝c0p 24938  Polycply 25450  𝔸caa 25579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-inf2 9502  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7599  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-pm 8693  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-sup 9303  df-inf 9304  df-oi 9371  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-z 12425  df-uz 12688  df-rp 12836  df-fz 13345  df-fzo 13488  df-fl 13617  df-seq 13827  df-exp 13888  df-hash 14150  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-rlim 15297  df-sum 15497  df-0p 24939  df-ply 25454  df-coe 25456  df-dgr 25457  df-aa 25580
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator