| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrplycl | Structured version Visualization version GIF version | ||
| Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnsrplycl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
| cnsrplycl.p | ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) |
| cnsrplycl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| cnsrplycl.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| cnsrplycl | ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsrplycl.c | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝑆) | |
| 2 | cnsrplycl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
| 3 | cnfldbas 21302 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 3 | subrgss 20494 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 6 | plyss 26139 | . . . . 5 ⊢ ((𝐶 ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆)) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆)) |
| 8 | cnsrplycl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) | |
| 9 | 7, 8 | sseldd 3944 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝑆)) |
| 10 | cnsrplycl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 11 | 5, 10 | sseldd 3944 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | eqid 2729 | . . . 4 ⊢ (coeff‘𝑃) = (coeff‘𝑃) | |
| 13 | eqid 2729 | . . . 4 ⊢ (deg‘𝑃) = (deg‘𝑃) | |
| 14 | 12, 13 | coeid2 26179 | . . 3 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
| 15 | 9, 11, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
| 16 | fzfid 13917 | . . 3 ⊢ (𝜑 → (0...(deg‘𝑃)) ∈ Fin) | |
| 17 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld)) |
| 18 | subrgsubg 20499 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld)) | |
| 19 | cnfld0 21336 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
| 20 | 19 | subg0cl 19050 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆) |
| 21 | 2, 18, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑆) |
| 22 | 12 | coef2 26171 | . . . . . . 7 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0⟶𝑆) |
| 23 | 9, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝑃):ℕ0⟶𝑆) |
| 24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0⟶𝑆) |
| 25 | elfznn0 13560 | . . . . . 6 ⊢ (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0) | |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0) |
| 27 | 24, 26 | ffvelcdmd 7040 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆) |
| 28 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑋 ∈ 𝑆) |
| 29 | 17, 28, 26 | cnsrexpcl 43149 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (𝑋↑𝑘) ∈ 𝑆) |
| 30 | cnfldmul 21306 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 31 | 30 | subrgmcl 20506 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋↑𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 32 | 17, 27, 29, 31 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 33 | 2, 16, 32 | fsumcnsrcl 43150 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 34 | 15, 33 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ⟶wf 6496 ‘cfv 6500 (class class class)co 7370 ℂcc 11045 0cc0 11047 · cmul 11052 ℕ0cn0 12421 ...cfz 13447 ↑cexp 14005 Σcsu 15630 SubGrpcsubg 19036 SubRingcsubrg 20491 ℂfldccnfld 21298 Polycply 26124 coeffccoe 26126 degcdgr 26127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-inf2 9573 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 ax-addf 11126 ax-mulf 11127 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-pm 8780 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-sup 9370 df-inf 9371 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-div 11815 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-rp 12931 df-fz 13448 df-fzo 13595 df-fl 13733 df-seq 13946 df-exp 14006 df-hash 14275 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15432 df-rlim 15433 df-sum 15631 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-starv 17213 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-0g 17382 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-grp 18852 df-minusg 18853 df-subg 19039 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrng 20468 df-subrg 20492 df-cnfld 21299 df-0p 25606 df-ply 26128 df-coe 26130 df-dgr 26131 |
| This theorem is referenced by: rngunsnply 43153 |
| Copyright terms: Public domain | W3C validator |