Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrplycl | Structured version Visualization version GIF version |
Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
cnsrplycl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
cnsrplycl.p | ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) |
cnsrplycl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
cnsrplycl.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
Ref | Expression |
---|---|
cnsrplycl | ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsrplycl.c | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝑆) | |
2 | cnsrplycl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
3 | cnfldbas 20395 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
4 | 3 | subrgss 19829 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | plyss 25120 | . . . . 5 ⊢ ((𝐶 ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆)) | |
7 | 1, 5, 6 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆)) |
8 | cnsrplycl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) | |
9 | 7, 8 | sseldd 3917 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝑆)) |
10 | cnsrplycl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
11 | 5, 10 | sseldd 3917 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
12 | eqid 2738 | . . . 4 ⊢ (coeff‘𝑃) = (coeff‘𝑃) | |
13 | eqid 2738 | . . . 4 ⊢ (deg‘𝑃) = (deg‘𝑃) | |
14 | 12, 13 | coeid2 25160 | . . 3 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
15 | 9, 11, 14 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
16 | fzfid 13573 | . . 3 ⊢ (𝜑 → (0...(deg‘𝑃)) ∈ Fin) | |
17 | 2 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld)) |
18 | subrgsubg 19834 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld)) | |
19 | cnfld0 20415 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
20 | 19 | subg0cl 18579 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆) |
21 | 2, 18, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑆) |
22 | 12 | coef2 25152 | . . . . . . 7 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0⟶𝑆) |
23 | 9, 21, 22 | syl2anc 587 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝑃):ℕ0⟶𝑆) |
24 | 23 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0⟶𝑆) |
25 | elfznn0 13230 | . . . . . 6 ⊢ (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0) | |
26 | 25 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0) |
27 | 24, 26 | ffvelrnd 6924 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆) |
28 | 10 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑋 ∈ 𝑆) |
29 | 17, 28, 26 | cnsrexpcl 40726 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (𝑋↑𝑘) ∈ 𝑆) |
30 | cnfldmul 20397 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
31 | 30 | subrgmcl 19840 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋↑𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
32 | 17, 27, 29, 31 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
33 | 2, 16, 32 | fsumcnsrcl 40727 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
34 | 15, 33 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ⊆ wss 3881 ⟶wf 6394 ‘cfv 6398 (class class class)co 7232 ℂcc 10752 0cc0 10754 · cmul 10759 ℕ0cn0 12115 ...cfz 13120 ↑cexp 13662 Σcsu 15277 SubGrpcsubg 18565 SubRingcsubrg 19824 ℂfldccnfld 20391 Polycply 25105 coeffccoe 25107 degcdgr 25108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-inf2 9281 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-addf 10833 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-map 8531 df-pm 8532 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-sup 9083 df-inf 9084 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-rp 12612 df-fz 13121 df-fzo 13264 df-fl 13392 df-seq 13602 df-exp 13663 df-hash 13925 df-cj 14690 df-re 14691 df-im 14692 df-sqrt 14826 df-abs 14827 df-clim 15077 df-rlim 15078 df-sum 15278 df-struct 16728 df-sets 16745 df-slot 16763 df-ndx 16773 df-base 16789 df-ress 16813 df-plusg 16843 df-mulr 16844 df-starv 16845 df-tset 16849 df-ple 16850 df-ds 16852 df-unif 16853 df-0g 16974 df-mgm 18142 df-sgrp 18191 df-mnd 18202 df-grp 18396 df-subg 18568 df-cmn 19200 df-mgp 19533 df-ur 19545 df-ring 19592 df-cring 19593 df-subrg 19826 df-cnfld 20392 df-0p 24594 df-ply 25109 df-coe 25111 df-dgr 25112 |
This theorem is referenced by: rngunsnply 40734 |
Copyright terms: Public domain | W3C validator |