Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrplycl | Structured version Visualization version GIF version |
Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
cnsrplycl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
cnsrplycl.p | ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) |
cnsrplycl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
cnsrplycl.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
Ref | Expression |
---|---|
cnsrplycl | ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsrplycl.c | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝑆) | |
2 | cnsrplycl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
3 | cnfldbas 20514 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
4 | 3 | subrgss 19940 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | plyss 25265 | . . . . 5 ⊢ ((𝐶 ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆)) | |
7 | 1, 5, 6 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆)) |
8 | cnsrplycl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) | |
9 | 7, 8 | sseldd 3918 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝑆)) |
10 | cnsrplycl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
11 | 5, 10 | sseldd 3918 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
12 | eqid 2738 | . . . 4 ⊢ (coeff‘𝑃) = (coeff‘𝑃) | |
13 | eqid 2738 | . . . 4 ⊢ (deg‘𝑃) = (deg‘𝑃) | |
14 | 12, 13 | coeid2 25305 | . . 3 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
15 | 9, 11, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
16 | fzfid 13621 | . . 3 ⊢ (𝜑 → (0...(deg‘𝑃)) ∈ Fin) | |
17 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld)) |
18 | subrgsubg 19945 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld)) | |
19 | cnfld0 20534 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
20 | 19 | subg0cl 18678 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆) |
21 | 2, 18, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑆) |
22 | 12 | coef2 25297 | . . . . . . 7 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0⟶𝑆) |
23 | 9, 21, 22 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝑃):ℕ0⟶𝑆) |
24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0⟶𝑆) |
25 | elfznn0 13278 | . . . . . 6 ⊢ (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0) | |
26 | 25 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0) |
27 | 24, 26 | ffvelrnd 6944 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆) |
28 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑋 ∈ 𝑆) |
29 | 17, 28, 26 | cnsrexpcl 40906 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (𝑋↑𝑘) ∈ 𝑆) |
30 | cnfldmul 20516 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
31 | 30 | subrgmcl 19951 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋↑𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
32 | 17, 27, 29, 31 | syl3anc 1369 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
33 | 2, 16, 32 | fsumcnsrcl 40907 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
34 | 15, 33 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 ℕ0cn0 12163 ...cfz 13168 ↑cexp 13710 Σcsu 15325 SubGrpcsubg 18664 SubRingcsubrg 19935 ℂfldccnfld 20510 Polycply 25250 coeffccoe 25252 degcdgr 25253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-subg 18667 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-cnfld 20511 df-0p 24739 df-ply 25254 df-coe 25256 df-dgr 25257 |
This theorem is referenced by: rngunsnply 40914 |
Copyright terms: Public domain | W3C validator |