| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrplycl | Structured version Visualization version GIF version | ||
| Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnsrplycl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
| cnsrplycl.p | ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) |
| cnsrplycl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| cnsrplycl.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| cnsrplycl | ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsrplycl.c | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝑆) | |
| 2 | cnsrplycl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
| 3 | cnfldbas 21288 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 3 | subrgss 20480 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 6 | plyss 26124 | . . . . 5 ⊢ ((𝐶 ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆)) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆)) |
| 8 | cnsrplycl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) | |
| 9 | 7, 8 | sseldd 3933 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝑆)) |
| 10 | cnsrplycl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 11 | 5, 10 | sseldd 3933 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | eqid 2730 | . . . 4 ⊢ (coeff‘𝑃) = (coeff‘𝑃) | |
| 13 | eqid 2730 | . . . 4 ⊢ (deg‘𝑃) = (deg‘𝑃) | |
| 14 | 12, 13 | coeid2 26164 | . . 3 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
| 15 | 9, 11, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
| 16 | fzfid 13872 | . . 3 ⊢ (𝜑 → (0...(deg‘𝑃)) ∈ Fin) | |
| 17 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld)) |
| 18 | subrgsubg 20485 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld)) | |
| 19 | cnfld0 21322 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
| 20 | 19 | subg0cl 19039 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆) |
| 21 | 2, 18, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑆) |
| 22 | 12 | coef2 26156 | . . . . . . 7 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0⟶𝑆) |
| 23 | 9, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝑃):ℕ0⟶𝑆) |
| 24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0⟶𝑆) |
| 25 | elfznn0 13512 | . . . . . 6 ⊢ (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0) | |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0) |
| 27 | 24, 26 | ffvelcdmd 7013 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆) |
| 28 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑋 ∈ 𝑆) |
| 29 | 17, 28, 26 | cnsrexpcl 43177 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (𝑋↑𝑘) ∈ 𝑆) |
| 30 | cnfldmul 21292 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 31 | 30 | subrgmcl 20492 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋↑𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 32 | 17, 27, 29, 31 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 33 | 2, 16, 32 | fsumcnsrcl 43178 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 34 | 15, 33 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 0cc0 10998 · cmul 11003 ℕ0cn0 12373 ...cfz 13399 ↑cexp 13960 Σcsu 15585 SubGrpcsubg 19025 SubRingcsubrg 20477 ℂfldccnfld 21284 Polycply 26109 coeffccoe 26111 degcdgr 26112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-rlim 15388 df-sum 15586 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-subg 19028 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-subrng 20454 df-subrg 20478 df-cnfld 21285 df-0p 25591 df-ply 26113 df-coe 26115 df-dgr 26116 |
| This theorem is referenced by: rngunsnply 43181 |
| Copyright terms: Public domain | W3C validator |