Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrplycl Structured version   Visualization version   GIF version

Theorem cnsrplycl 43191
Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrplycl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrplycl.p (𝜑𝑃 ∈ (Poly‘𝐶))
cnsrplycl.x (𝜑𝑋𝑆)
cnsrplycl.c (𝜑𝐶𝑆)
Assertion
Ref Expression
cnsrplycl (𝜑 → (𝑃𝑋) ∈ 𝑆)

Proof of Theorem cnsrplycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cnsrplycl.c . . . . 5 (𝜑𝐶𝑆)
2 cnsrplycl.s . . . . . 6 (𝜑𝑆 ∈ (SubRing‘ℂfld))
3 cnfldbas 21319 . . . . . . 7 ℂ = (Base‘ℂfld)
43subrgss 20532 . . . . . 6 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
52, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 plyss 26156 . . . . 5 ((𝐶𝑆𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆))
71, 5, 6syl2anc 584 . . . 4 (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆))
8 cnsrplycl.p . . . 4 (𝜑𝑃 ∈ (Poly‘𝐶))
97, 8sseldd 3959 . . 3 (𝜑𝑃 ∈ (Poly‘𝑆))
10 cnsrplycl.x . . . 4 (𝜑𝑋𝑆)
115, 10sseldd 3959 . . 3 (𝜑𝑋 ∈ ℂ)
12 eqid 2735 . . . 4 (coeff‘𝑃) = (coeff‘𝑃)
13 eqid 2735 . . . 4 (deg‘𝑃) = (deg‘𝑃)
1412, 13coeid2 26196 . . 3 ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)))
159, 11, 14syl2anc 584 . 2 (𝜑 → (𝑃𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)))
16 fzfid 13991 . . 3 (𝜑 → (0...(deg‘𝑃)) ∈ Fin)
172adantr 480 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld))
18 subrgsubg 20537 . . . . . . . 8 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
19 cnfld0 21355 . . . . . . . . 9 0 = (0g‘ℂfld)
2019subg0cl 19117 . . . . . . . 8 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
212, 18, 203syl 18 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
2212coef2 26188 . . . . . . 7 ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0𝑆)
239, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (coeff‘𝑃):ℕ0𝑆)
2423adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0𝑆)
25 elfznn0 13637 . . . . . 6 (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0)
2625adantl 481 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0)
2724, 26ffvelcdmd 7075 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆)
2810adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑋𝑆)
2917, 28, 26cnsrexpcl 43189 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (𝑋𝑘) ∈ 𝑆)
30 cnfldmul 21323 . . . . 5 · = (.r‘ℂfld)
3130subrgmcl 20544 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
3217, 27, 29, 31syl3anc 1373 . . 3 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
332, 16, 32fsumcnsrcl 43190 . 2 (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
3415, 33eqeltrd 2834 1 (𝜑 → (𝑃𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129   · cmul 11134  0cn0 12501  ...cfz 13524  cexp 14079  Σcsu 15702  SubGrpcsubg 19103  SubRingcsubrg 20529  fldccnfld 21315  Polycply 26141  coeffccoe 26143  degcdgr 26144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-cnfld 21316  df-0p 25623  df-ply 26145  df-coe 26147  df-dgr 26148
This theorem is referenced by:  rngunsnply  43193
  Copyright terms: Public domain W3C validator