| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrplycl | Structured version Visualization version GIF version | ||
| Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnsrplycl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
| cnsrplycl.p | ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) |
| cnsrplycl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| cnsrplycl.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| cnsrplycl | ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsrplycl.c | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝑆) | |
| 2 | cnsrplycl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
| 3 | cnfldbas 21275 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 3 | subrgss 20488 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 6 | plyss 26111 | . . . . 5 ⊢ ((𝐶 ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆)) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆)) |
| 8 | cnsrplycl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) | |
| 9 | 7, 8 | sseldd 3950 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝑆)) |
| 10 | cnsrplycl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 11 | 5, 10 | sseldd 3950 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | eqid 2730 | . . . 4 ⊢ (coeff‘𝑃) = (coeff‘𝑃) | |
| 13 | eqid 2730 | . . . 4 ⊢ (deg‘𝑃) = (deg‘𝑃) | |
| 14 | 12, 13 | coeid2 26151 | . . 3 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
| 15 | 9, 11, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘))) |
| 16 | fzfid 13945 | . . 3 ⊢ (𝜑 → (0...(deg‘𝑃)) ∈ Fin) | |
| 17 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld)) |
| 18 | subrgsubg 20493 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld)) | |
| 19 | cnfld0 21311 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
| 20 | 19 | subg0cl 19073 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆) |
| 21 | 2, 18, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑆) |
| 22 | 12 | coef2 26143 | . . . . . . 7 ⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0⟶𝑆) |
| 23 | 9, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝑃):ℕ0⟶𝑆) |
| 24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0⟶𝑆) |
| 25 | elfznn0 13588 | . . . . . 6 ⊢ (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0) | |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0) |
| 27 | 24, 26 | ffvelcdmd 7060 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆) |
| 28 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → 𝑋 ∈ 𝑆) |
| 29 | 17, 28, 26 | cnsrexpcl 43161 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (𝑋↑𝑘) ∈ 𝑆) |
| 30 | cnfldmul 21279 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 31 | 30 | subrgmcl 20500 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋↑𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 32 | 17, 27, 29, 31 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 33 | 2, 16, 32 | fsumcnsrcl 43162 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋↑𝑘)) ∈ 𝑆) |
| 34 | 15, 33 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 ℕ0cn0 12449 ...cfz 13475 ↑cexp 14033 Σcsu 15659 SubGrpcsubg 19059 SubRingcsubrg 20485 ℂfldccnfld 21271 Polycply 26096 coeffccoe 26098 degcdgr 26099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-cnfld 21272 df-0p 25578 df-ply 26100 df-coe 26102 df-dgr 26103 |
| This theorem is referenced by: rngunsnply 43165 |
| Copyright terms: Public domain | W3C validator |