Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrplycl Structured version   Visualization version   GIF version

Theorem cnsrplycl 41842
Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrplycl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrplycl.p (𝜑𝑃 ∈ (Poly‘𝐶))
cnsrplycl.x (𝜑𝑋𝑆)
cnsrplycl.c (𝜑𝐶𝑆)
Assertion
Ref Expression
cnsrplycl (𝜑 → (𝑃𝑋) ∈ 𝑆)

Proof of Theorem cnsrplycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cnsrplycl.c . . . . 5 (𝜑𝐶𝑆)
2 cnsrplycl.s . . . . . 6 (𝜑𝑆 ∈ (SubRing‘ℂfld))
3 cnfldbas 20933 . . . . . . 7 ℂ = (Base‘ℂfld)
43subrgss 20352 . . . . . 6 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
52, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 plyss 25695 . . . . 5 ((𝐶𝑆𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆))
71, 5, 6syl2anc 585 . . . 4 (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆))
8 cnsrplycl.p . . . 4 (𝜑𝑃 ∈ (Poly‘𝐶))
97, 8sseldd 3982 . . 3 (𝜑𝑃 ∈ (Poly‘𝑆))
10 cnsrplycl.x . . . 4 (𝜑𝑋𝑆)
115, 10sseldd 3982 . . 3 (𝜑𝑋 ∈ ℂ)
12 eqid 2733 . . . 4 (coeff‘𝑃) = (coeff‘𝑃)
13 eqid 2733 . . . 4 (deg‘𝑃) = (deg‘𝑃)
1412, 13coeid2 25735 . . 3 ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)))
159, 11, 14syl2anc 585 . 2 (𝜑 → (𝑃𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)))
16 fzfid 13934 . . 3 (𝜑 → (0...(deg‘𝑃)) ∈ Fin)
172adantr 482 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld))
18 subrgsubg 20357 . . . . . . . 8 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
19 cnfld0 20954 . . . . . . . . 9 0 = (0g‘ℂfld)
2019subg0cl 19008 . . . . . . . 8 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
212, 18, 203syl 18 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
2212coef2 25727 . . . . . . 7 ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0𝑆)
239, 21, 22syl2anc 585 . . . . . 6 (𝜑 → (coeff‘𝑃):ℕ0𝑆)
2423adantr 482 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0𝑆)
25 elfznn0 13590 . . . . . 6 (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0)
2625adantl 483 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0)
2724, 26ffvelcdmd 7083 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆)
2810adantr 482 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑋𝑆)
2917, 28, 26cnsrexpcl 41840 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (𝑋𝑘) ∈ 𝑆)
30 cnfldmul 20935 . . . . 5 · = (.r‘ℂfld)
3130subrgmcl 20363 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
3217, 27, 29, 31syl3anc 1372 . . 3 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
332, 16, 32fsumcnsrcl 41841 . 2 (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
3415, 33eqeltrd 2834 1 (𝜑 → (𝑃𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3947  wf 6536  cfv 6540  (class class class)co 7404  cc 11104  0cc0 11106   · cmul 11111  0cn0 12468  ...cfz 13480  cexp 14023  Σcsu 15628  SubGrpcsubg 18994  SubRingcsubrg 20347  fldccnfld 20929  Polycply 25680  coeffccoe 25682  degcdgr 25683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-subg 18997  df-cmn 19643  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-subrg 20349  df-cnfld 20930  df-0p 25169  df-ply 25684  df-coe 25686  df-dgr 25687
This theorem is referenced by:  rngunsnply  41848
  Copyright terms: Public domain W3C validator