MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0bi Structured version   Visualization version   GIF version

Theorem mul2lt0bi 12836
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
mul2lt0bi (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))

Proof of Theorem mul2lt0bi
StepHypRef Expression
1 mul2lt0.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 11005 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
4 0red 10978 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
53, 4ltnled 11122 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 · 𝐵)))
61adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
72adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
8 simprl 768 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐴)
9 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
106, 7, 8, 9mulge0d 11552 . . . . . . . . 9 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
1110ex 413 . . . . . . . 8 (𝜑 → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
1211con3d 152 . . . . . . 7 (𝜑 → (¬ 0 ≤ (𝐴 · 𝐵) → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
135, 12sylbid 239 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
14 ianor 979 . . . . . 6 (¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵))
1513, 14syl6ib 250 . . . . 5 (𝜑 → ((𝐴 · 𝐵) < 0 → (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
161, 4ltnled 11122 . . . . . 6 (𝜑 → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
172, 4ltnled 11122 . . . . . 6 (𝜑 → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵))
1816, 17orbi12d 916 . . . . 5 (𝜑 → ((𝐴 < 0 ∨ 𝐵 < 0) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
1915, 18sylibrd 258 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 → (𝐴 < 0 ∨ 𝐵 < 0)))
2019imp 407 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 ∨ 𝐵 < 0))
21 simpr 485 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐴 < 0)
221adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
232adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
24 simpr 485 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0)
2522, 23, 24mul2lt0llt0 12834 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
2621, 25jca 512 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (𝐴 < 0 ∧ 0 < 𝐵))
2726ex 413 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 → (𝐴 < 0 ∧ 0 < 𝐵)))
2822, 23, 24mul2lt0rlt0 12832 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 0 < 𝐴)
29 simpr 485 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 𝐵 < 0)
3028, 29jca 512 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → (0 < 𝐴𝐵 < 0))
3130ex 413 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 < 0 → (0 < 𝐴𝐵 < 0)))
3227, 31orim12d 962 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∨ 𝐵 < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
3320, 32mpd 15 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0)))
341adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
35 0red 10978 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 ∈ ℝ)
362adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
37 simprr 770 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 < 𝐵)
3836, 37elrpd 12769 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ+)
39 simprl 768 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 < 0)
4034, 35, 38, 39ltmul1dd 12827 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < (0 · 𝐵))
4136recnd 11003 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
4241mul02d 11173 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (0 · 𝐵) = 0)
4340, 42breqtrd 5100 . . 3 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0)
442adantr 481 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 ∈ ℝ)
45 0red 10978 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 ∈ ℝ)
461adantr 481 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ)
47 simprl 768 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 < 𝐴)
4846, 47elrpd 12769 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ+)
49 simprr 770 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 < 0)
5044, 45, 48, 49ltmul2dd 12828 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < (𝐴 · 0))
5146recnd 11003 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℂ)
5251mul01d 11174 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 0) = 0)
5350, 52breqtrd 5100 . . 3 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < 0)
5443, 53jaodan 955 . 2 ((𝜑 ∧ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))) → (𝐴 · 𝐵) < 0)
5533, 54impbida 798 1 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-rp 12731
This theorem is referenced by:  2mulprm  16398  ztprmneprm  45683
  Copyright terms: Public domain W3C validator