MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0bi Structured version   Visualization version   GIF version

Theorem mul2lt0bi 13002
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
mul2lt0bi (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))

Proof of Theorem mul2lt0bi
StepHypRef Expression
1 mul2lt0.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 11151 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
4 0red 11124 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
53, 4ltnled 11269 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 · 𝐵)))
61adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
72adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
8 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐴)
9 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
106, 7, 8, 9mulge0d 11703 . . . . . . . . 9 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
1110ex 412 . . . . . . . 8 (𝜑 → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
1211con3d 152 . . . . . . 7 (𝜑 → (¬ 0 ≤ (𝐴 · 𝐵) → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
135, 12sylbid 240 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
14 ianor 983 . . . . . 6 (¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵))
1513, 14imbitrdi 251 . . . . 5 (𝜑 → ((𝐴 · 𝐵) < 0 → (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
161, 4ltnled 11269 . . . . . 6 (𝜑 → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
172, 4ltnled 11269 . . . . . 6 (𝜑 → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵))
1816, 17orbi12d 918 . . . . 5 (𝜑 → ((𝐴 < 0 ∨ 𝐵 < 0) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
1915, 18sylibrd 259 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 → (𝐴 < 0 ∨ 𝐵 < 0)))
2019imp 406 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 ∨ 𝐵 < 0))
21 simpr 484 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐴 < 0)
221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
232adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
24 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0)
2522, 23, 24mul2lt0llt0 13000 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
2621, 25jca 511 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (𝐴 < 0 ∧ 0 < 𝐵))
2726ex 412 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 → (𝐴 < 0 ∧ 0 < 𝐵)))
2822, 23, 24mul2lt0rlt0 12998 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 0 < 𝐴)
29 simpr 484 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 𝐵 < 0)
3028, 29jca 511 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → (0 < 𝐴𝐵 < 0))
3130ex 412 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 < 0 → (0 < 𝐴𝐵 < 0)))
3227, 31orim12d 966 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∨ 𝐵 < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
3320, 32mpd 15 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0)))
341adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
35 0red 11124 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 ∈ ℝ)
362adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
37 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 < 𝐵)
3836, 37elrpd 12935 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ+)
39 simprl 770 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 < 0)
4034, 35, 38, 39ltmul1dd 12993 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < (0 · 𝐵))
4136recnd 11149 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
4241mul02d 11320 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (0 · 𝐵) = 0)
4340, 42breqtrd 5121 . . 3 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0)
442adantr 480 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 ∈ ℝ)
45 0red 11124 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 ∈ ℝ)
461adantr 480 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ)
47 simprl 770 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 < 𝐴)
4846, 47elrpd 12935 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ+)
49 simprr 772 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 < 0)
5044, 45, 48, 49ltmul2dd 12994 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < (𝐴 · 0))
5146recnd 11149 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℂ)
5251mul01d 11321 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 0) = 0)
5350, 52breqtrd 5121 . . 3 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < 0)
5443, 53jaodan 959 . 2 ((𝜑 ∧ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))) → (𝐴 · 𝐵) < 0)
5533, 54impbida 800 1 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2113   class class class wbr 5095  (class class class)co 7354  cr 11014  0cc0 11015   · cmul 11020   < clt 11155  cle 11156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-rp 12895
This theorem is referenced by:  2mulprm  16608  ztprmneprm  48474
  Copyright terms: Public domain W3C validator