Proof of Theorem mul2lt0bi
| Step | Hyp | Ref
| Expression |
| 1 | | mul2lt0.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | mul2lt0.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | 1, 2 | remulcld 11291 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 4 | | 0red 11264 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
| 5 | 3, 4 | ltnled 11408 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 · 𝐵))) |
| 6 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
| 7 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
| 8 | | simprl 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐴) |
| 9 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵) |
| 10 | 6, 7, 8, 9 | mulge0d 11840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |
| 11 | 10 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
| 12 | 11 | con3d 152 |
. . . . . . 7
⊢ (𝜑 → (¬ 0 ≤ (𝐴 · 𝐵) → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))) |
| 13 | 5, 12 | sylbid 240 |
. . . . . 6
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))) |
| 14 | | ianor 984 |
. . . . . 6
⊢ (¬ (0
≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)) |
| 15 | 13, 14 | imbitrdi 251 |
. . . . 5
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 → (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵))) |
| 16 | 1, 4 | ltnled 11408 |
. . . . . 6
⊢ (𝜑 → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴)) |
| 17 | 2, 4 | ltnled 11408 |
. . . . . 6
⊢ (𝜑 → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵)) |
| 18 | 16, 17 | orbi12d 919 |
. . . . 5
⊢ (𝜑 → ((𝐴 < 0 ∨ 𝐵 < 0) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵))) |
| 19 | 15, 18 | sylibrd 259 |
. . . 4
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 → (𝐴 < 0 ∨ 𝐵 < 0))) |
| 20 | 19 | imp 406 |
. . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 ∨ 𝐵 < 0)) |
| 21 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐴 < 0) |
| 22 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ) |
| 23 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ) |
| 24 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0) |
| 25 | 22, 23, 24 | mul2lt0llt0 13139 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵) |
| 26 | 21, 25 | jca 511 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (𝐴 < 0 ∧ 0 < 𝐵)) |
| 27 | 26 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 → (𝐴 < 0 ∧ 0 < 𝐵))) |
| 28 | 22, 23, 24 | mul2lt0rlt0 13137 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 0 < 𝐴) |
| 29 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 𝐵 < 0) |
| 30 | 28, 29 | jca 511 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → (0 < 𝐴 ∧ 𝐵 < 0)) |
| 31 | 30 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 < 0 → (0 < 𝐴 ∧ 𝐵 < 0))) |
| 32 | 27, 31 | orim12d 967 |
. . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∨ 𝐵 < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴 ∧ 𝐵 < 0)))) |
| 33 | 20, 32 | mpd 15 |
. 2
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴 ∧ 𝐵 < 0))) |
| 34 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ) |
| 35 | | 0red 11264 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 ∈ ℝ) |
| 36 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ) |
| 37 | | simprr 773 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 < 𝐵) |
| 38 | 36, 37 | elrpd 13074 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈
ℝ+) |
| 39 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 < 0) |
| 40 | 34, 35, 38, 39 | ltmul1dd 13132 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < (0 · 𝐵)) |
| 41 | 36 | recnd 11289 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ) |
| 42 | 41 | mul02d 11459 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (0 · 𝐵) = 0) |
| 43 | 40, 42 | breqtrd 5169 |
. . 3
⊢ ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0) |
| 44 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → 𝐵 ∈ ℝ) |
| 45 | | 0red 11264 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → 0 ∈
ℝ) |
| 46 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → 𝐴 ∈ ℝ) |
| 47 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → 0 < 𝐴) |
| 48 | 46, 47 | elrpd 13074 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → 𝐴 ∈
ℝ+) |
| 49 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → 𝐵 < 0) |
| 50 | 44, 45, 48, 49 | ltmul2dd 13133 |
. . . 4
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → (𝐴 · 𝐵) < (𝐴 · 0)) |
| 51 | 46 | recnd 11289 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → 𝐴 ∈ ℂ) |
| 52 | 51 | mul01d 11460 |
. . . 4
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → (𝐴 · 0) = 0) |
| 53 | 50, 52 | breqtrd 5169 |
. . 3
⊢ ((𝜑 ∧ (0 < 𝐴 ∧ 𝐵 < 0)) → (𝐴 · 𝐵) < 0) |
| 54 | 43, 53 | jaodan 960 |
. 2
⊢ ((𝜑 ∧ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴 ∧ 𝐵 < 0))) → (𝐴 · 𝐵) < 0) |
| 55 | 33, 54 | impbida 801 |
1
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴 ∧ 𝐵 < 0)))) |