MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oexpneg Structured version   Visualization version   GIF version

Theorem oexpneg 16161
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oexpneg ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (-๐ดโ†‘๐‘) = -(๐ดโ†‘๐‘))

Proof of Theorem oexpneg
Dummy variable ๐‘› is distinct from all other variables.
StepHypRef Expression
1 nnz 12455 . . . . 5 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„ค)
2 odd2np1 16157 . . . . 5 (๐‘ โˆˆ โ„ค โ†’ (ยฌ 2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘))
31, 2syl 17 . . . 4 (๐‘ โˆˆ โ„• โ†’ (ยฌ 2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘))
43biimpa 477 . . 3 ((๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘)
543adant1 1130 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘)
6 simpl1 1191 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐ด โˆˆ โ„‚)
7 simprr 771 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((2 ยท ๐‘›) + 1) = ๐‘)
8 simpl2 1192 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘ โˆˆ โ„•)
98nncnd 12102 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘ โˆˆ โ„‚)
10 1cnd 11083 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 1 โˆˆ โ„‚)
11 2z 12465 . . . . . . . . . . 11 2 โˆˆ โ„ค
12 simprl 769 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘› โˆˆ โ„ค)
13 zmulcl 12482 . . . . . . . . . . 11 ((2 โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ (2 ยท ๐‘›) โˆˆ โ„ค)
1411, 12, 13sylancr 587 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (2 ยท ๐‘›) โˆˆ โ„ค)
1514zcnd 12540 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (2 ยท ๐‘›) โˆˆ โ„‚)
169, 10, 15subadd2d 11464 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐‘ โˆ’ 1) = (2 ยท ๐‘›) โ†” ((2 ยท ๐‘›) + 1) = ๐‘))
177, 16mpbird 256 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐‘ โˆ’ 1) = (2 ยท ๐‘›))
18 nnm1nn0 12387 . . . . . . . 8 (๐‘ โˆˆ โ„• โ†’ (๐‘ โˆ’ 1) โˆˆ โ„•0)
198, 18syl 17 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐‘ โˆ’ 1) โˆˆ โ„•0)
2017, 19eqeltrrd 2839 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (2 ยท ๐‘›) โˆˆ โ„•0)
216, 20expcld 13977 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘(2 ยท ๐‘›)) โˆˆ โ„‚)
2221, 6mulneg2d 11542 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = -((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด))
23 sqneg 13949 . . . . . . . . 9 (๐ด โˆˆ โ„‚ โ†’ (-๐ดโ†‘2) = (๐ดโ†‘2))
246, 23syl 17 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘2) = (๐ดโ†‘2))
2524oveq1d 7364 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((-๐ดโ†‘2)โ†‘๐‘›) = ((๐ดโ†‘2)โ†‘๐‘›))
266negcld 11432 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ -๐ด โˆˆ โ„‚)
27 2rp 12848 . . . . . . . . . . 11 2 โˆˆ โ„+
2827a1i 11 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 2 โˆˆ โ„+)
2912zred 12539 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘› โˆˆ โ„)
3020nn0ge0d 12409 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 0 โ‰ค (2 ยท ๐‘›))
3128, 29, 30prodge0rd 12950 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 0 โ‰ค ๐‘›)
32 elnn0z 12445 . . . . . . . . 9 (๐‘› โˆˆ โ„•0 โ†” (๐‘› โˆˆ โ„ค โˆง 0 โ‰ค ๐‘›))
3312, 31, 32sylanbrc 583 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘› โˆˆ โ„•0)
34 2nn0 12363 . . . . . . . . 9 2 โˆˆ โ„•0
3534a1i 11 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 2 โˆˆ โ„•0)
3626, 33, 35expmuld 13980 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘(2 ยท ๐‘›)) = ((-๐ดโ†‘2)โ†‘๐‘›))
376, 33, 35expmuld 13980 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘(2 ยท ๐‘›)) = ((๐ดโ†‘2)โ†‘๐‘›))
3825, 36, 373eqtr4d 2787 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘(2 ยท ๐‘›)) = (๐ดโ†‘(2 ยท ๐‘›)))
3938oveq1d 7364 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((-๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = ((๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด))
4026, 20expp1d 13978 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘((2 ยท ๐‘›) + 1)) = ((-๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด))
417oveq2d 7365 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘((2 ยท ๐‘›) + 1)) = (-๐ดโ†‘๐‘))
4240, 41eqtr3d 2779 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((-๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = (-๐ดโ†‘๐‘))
4339, 42eqtr3d 2779 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = (-๐ดโ†‘๐‘))
4422, 43eqtr3d 2779 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ -((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด) = (-๐ดโ†‘๐‘))
456, 20expp1d 13978 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘((2 ยท ๐‘›) + 1)) = ((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด))
467oveq2d 7365 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘((2 ยท ๐‘›) + 1)) = (๐ดโ†‘๐‘))
4745, 46eqtr3d 2779 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด) = (๐ดโ†‘๐‘))
4847negeqd 11328 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ -((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด) = -(๐ดโ†‘๐‘))
4944, 48eqtr3d 2779 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘๐‘) = -(๐ดโ†‘๐‘))
505, 49rexlimddv 3156 1 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (-๐ดโ†‘๐‘) = -(๐ดโ†‘๐‘))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  โˆƒwrex 3071   class class class wbr 5103  (class class class)co 7349  โ„‚cc 10982  0cc0 10984  1c1 10985   + caddc 10987   ยท cmul 10989   โ‰ค cle 11123   โˆ’ cmin 11318  -cneg 11319  โ„•cn 12086  2c2 12141  โ„•0cn0 12346  โ„คcz 12432  โ„+crp 12843  โ†‘cexp 13895   โˆฅ cdvds 16070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7793  df-2nd 7912  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-n0 12347  df-z 12433  df-uz 12696  df-rp 12844  df-seq 13835  df-exp 13896  df-dvds 16071
This theorem is referenced by:  dcubic1lem  26115  dcubic2  26116  mcubic  26119  lgseisenlem1  26645  lgseisenlem4  26648  m1lgs  26658  oexpreposd  40675  dffltz  40837  stirlinglem5  44072  2pwp1prm  45530
  Copyright terms: Public domain W3C validator