| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > transportprops | Structured version Visualization version GIF version | ||
| Description: Calculate the defining properties of the transport function. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| transportprops | ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (𝐷 Btwn 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉 ∧ 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉Cgr〈𝐴, 𝐵〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvtransport 36015 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) = (℩𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉))) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (℩𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)) |
| 3 | transportcl 36016 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) ∈ (𝔼‘𝑁)) | |
| 4 | segconeu 35994 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) | |
| 5 | opeq2 4834 | . . . . . 6 ⊢ (𝑟 = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) → 〈𝐶, 𝑟〉 = 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉) | |
| 6 | 5 | breq2d 5114 | . . . . 5 ⊢ (𝑟 = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) → (𝐷 Btwn 〈𝐶, 𝑟〉 ↔ 𝐷 Btwn 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉)) |
| 7 | opeq2 4834 | . . . . . 6 ⊢ (𝑟 = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) → 〈𝐷, 𝑟〉 = 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉) | |
| 8 | 7 | breq1d 5112 | . . . . 5 ⊢ (𝑟 = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) → (〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉 ↔ 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉Cgr〈𝐴, 𝐵〉)) |
| 9 | 6, 8 | anbi12d 632 | . . . 4 ⊢ (𝑟 = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) → ((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ↔ (𝐷 Btwn 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉 ∧ 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉Cgr〈𝐴, 𝐵〉))) |
| 10 | 9 | riota2 7352 | . . 3 ⊢ (((〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) ∈ (𝔼‘𝑁) ∧ ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) → ((𝐷 Btwn 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉 ∧ 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉Cgr〈𝐴, 𝐵〉) ↔ (℩𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉))) |
| 11 | 3, 4, 10 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ((𝐷 Btwn 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉 ∧ 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉Cgr〈𝐴, 𝐵〉) ↔ (℩𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) = (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉))) |
| 12 | 2, 11 | mpbird 257 | 1 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (𝐷 Btwn 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉 ∧ 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉Cgr〈𝐴, 𝐵〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃!wreu 3349 〈cop 4591 class class class wbr 5102 ‘cfv 6500 ℩crio 7326 (class class class)co 7370 ℕcn 12165 𝔼cee 28870 Btwn cbtwn 28871 Cgrccgr 28872 TransportToctransport 36012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-inf2 9573 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-sup 9370 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-div 11815 df-nn 12166 df-2 12228 df-3 12229 df-n0 12422 df-z 12509 df-uz 12773 df-rp 12931 df-ico 13291 df-icc 13292 df-fz 13448 df-fzo 13595 df-seq 13946 df-exp 14006 df-hash 14275 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15432 df-sum 15631 df-ee 28873 df-btwn 28874 df-cgr 28875 df-ofs 35966 df-transport 36013 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |