![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flval2 | Structured version Visualization version GIF version |
Description: An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004.) |
Ref | Expression |
---|---|
flval2 | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flle 13771 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
2 | flge 13777 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ 𝐴 ↔ 𝑦 ≤ (⌊‘𝐴))) | |
3 | 2 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) |
4 | 3 | ralrimiva 3145 | . . 3 ⊢ (𝐴 ∈ ℝ → ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) |
5 | flcl 13767 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
6 | zmax 12936 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) | |
7 | breq1 5151 | . . . . . 6 ⊢ (𝑥 = (⌊‘𝐴) → (𝑥 ≤ 𝐴 ↔ (⌊‘𝐴) ≤ 𝐴)) | |
8 | breq2 5152 | . . . . . . . 8 ⊢ (𝑥 = (⌊‘𝐴) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (⌊‘𝐴))) | |
9 | 8 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (⌊‘𝐴) → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴)))) |
10 | 9 | ralbidv 3176 | . . . . . 6 ⊢ (𝑥 = (⌊‘𝐴) → (∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴)))) |
11 | 7, 10 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = (⌊‘𝐴) → ((𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)) ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))))) |
12 | 11 | riota2 7394 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) → (((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴))) |
13 | 5, 6, 12 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ ℝ → (((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴))) |
14 | 1, 4, 13 | mpbi2and 709 | . 2 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴)) |
15 | 14 | eqcomd 2737 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃!wreu 3373 class class class wbr 5148 ‘cfv 6543 ℩crio 7367 ℝcr 11115 ≤ cle 11256 ℤcz 12565 ⌊cfl 13762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fl 13764 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |