| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flval2 | Structured version Visualization version GIF version | ||
| Description: An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004.) |
| Ref | Expression |
|---|---|
| flval2 | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flle 13821 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 2 | flge 13827 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ 𝐴 ↔ 𝑦 ≤ (⌊‘𝐴))) | |
| 3 | 2 | biimpd 229 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) |
| 4 | 3 | ralrimiva 3133 | . . 3 ⊢ (𝐴 ∈ ℝ → ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) |
| 5 | flcl 13817 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 6 | zmax 12969 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) | |
| 7 | breq1 5126 | . . . . . 6 ⊢ (𝑥 = (⌊‘𝐴) → (𝑥 ≤ 𝐴 ↔ (⌊‘𝐴) ≤ 𝐴)) | |
| 8 | breq2 5127 | . . . . . . . 8 ⊢ (𝑥 = (⌊‘𝐴) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (⌊‘𝐴))) | |
| 9 | 8 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (⌊‘𝐴) → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴)))) |
| 10 | 9 | ralbidv 3165 | . . . . . 6 ⊢ (𝑥 = (⌊‘𝐴) → (∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴)))) |
| 11 | 7, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = (⌊‘𝐴) → ((𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)) ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))))) |
| 12 | 11 | riota2 7395 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) → (((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴))) |
| 13 | 5, 6, 12 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → (((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴))) |
| 14 | 1, 4, 13 | mpbi2and 712 | . 2 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴)) |
| 15 | 14 | eqcomd 2740 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 class class class wbr 5123 ‘cfv 6541 ℩crio 7369 ℝcr 11136 ≤ cle 11278 ℤcz 12596 ⌊cfl 13812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fl 13814 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |