| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprecred | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprecred | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpreccld 13066 | . 2 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| 3 | 2 | rpred 13056 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 1c1 11135 / cdiv 11899 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-rp 13014 |
| This theorem is referenced by: xov1plusxeqvd 13520 ltexp2r 14196 expnlbnd2 14257 rlimno1 15675 lebnumii 24921 sca2rab 25470 aalioulem4 26300 aalioulem5 26301 dvradcnv 26387 tanregt0 26505 divlogrlim 26601 logccv 26629 cxplt3 26666 asinlem3 26838 rlimcxp 26941 cxp2lim 26944 divsqrtsumlem 26947 logdiflbnd 26962 lgamgulmlem2 26997 lgamgulmlem3 26998 basellem3 27050 dchrisum0lema 27482 dchrisum0lem1 27484 dchrisum0lem2a 27485 mulog2sumlem1 27502 vmalogdivsum2 27506 pntrlog2bndlem2 27546 pntlemd 27562 pntlemr 27570 ostth3 27606 nmcexi 32012 knoppndvlem18 36552 knoppndvlem20 36554 irrapxlem4 42815 irrapxlem5 42816 ioodvbdlimc1lem2 45928 ioodvbdlimc2lem 45930 stoweidlem14 46010 fourierdlem39 46142 pimrecltpos 46704 smfrec 46785 |
| Copyright terms: Public domain | W3C validator |