Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rprecred | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprecred | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpreccld 12875 | . 2 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
3 | 2 | rpred 12865 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 (class class class)co 7329 ℝcr 10963 1c1 10965 / cdiv 11725 ℝ+crp 12823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-rp 12824 |
This theorem is referenced by: xov1plusxeqvd 13323 ltexp2r 13984 expnlbnd2 14042 rlimno1 15456 lebnumii 24227 sca2rab 24774 aalioulem4 25593 aalioulem5 25594 dvradcnv 25678 tanregt0 25793 divlogrlim 25888 logccv 25916 cxplt3 25953 asinlem3 26119 rlimcxp 26221 cxp2lim 26224 divsqrtsumlem 26227 logdiflbnd 26242 lgamgulmlem2 26277 lgamgulmlem3 26278 basellem3 26330 dchrisum0lema 26760 dchrisum0lem1 26762 dchrisum0lem2a 26763 mulog2sumlem1 26780 vmalogdivsum2 26784 pntrlog2bndlem2 26824 pntlemd 26840 pntlemr 26848 ostth3 26884 nmcexi 30589 knoppndvlem18 34800 knoppndvlem20 34802 irrapxlem4 40897 irrapxlem5 40898 ioodvbdlimc1lem2 43798 ioodvbdlimc2lem 43800 stoweidlem14 43880 fourierdlem39 44012 pimrecltpos 44572 smfrec 44653 |
Copyright terms: Public domain | W3C validator |