MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rprecred Structured version   Visualization version   GIF version

Theorem rprecred 13086
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rprecred (𝜑 → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rprecred
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpreccld 13085 . 2 (𝜑 → (1 / 𝐴) ∈ ℝ+)
32rpred 13075 1 (𝜑 → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  (class class class)co 7431  cr 11152  1c1 11154   / cdiv 11918  +crp 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-rp 13033
This theorem is referenced by:  xov1plusxeqvd  13535  ltexp2r  14210  expnlbnd2  14270  rlimno1  15687  lebnumii  25012  sca2rab  25561  aalioulem4  26392  aalioulem5  26393  dvradcnv  26479  tanregt0  26596  divlogrlim  26692  logccv  26720  cxplt3  26757  asinlem3  26929  rlimcxp  27032  cxp2lim  27035  divsqrtsumlem  27038  logdiflbnd  27053  lgamgulmlem2  27088  lgamgulmlem3  27089  basellem3  27141  dchrisum0lema  27573  dchrisum0lem1  27575  dchrisum0lem2a  27576  mulog2sumlem1  27593  vmalogdivsum2  27597  pntrlog2bndlem2  27637  pntlemd  27653  pntlemr  27661  ostth3  27697  nmcexi  32055  knoppndvlem18  36512  knoppndvlem20  36514  irrapxlem4  42813  irrapxlem5  42814  ioodvbdlimc1lem2  45888  ioodvbdlimc2lem  45890  stoweidlem14  45970  fourierdlem39  46102  pimrecltpos  46664  smfrec  46745
  Copyright terms: Public domain W3C validator