MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rprecred Structured version   Visualization version   GIF version

Theorem rprecred 12876
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rprecred (𝜑 → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rprecred
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpreccld 12875 . 2 (𝜑 → (1 / 𝐴) ∈ ℝ+)
32rpred 12865 1 (𝜑 → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  (class class class)co 7329  cr 10963  1c1 10965   / cdiv 11725  +crp 12823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-rp 12824
This theorem is referenced by:  xov1plusxeqvd  13323  ltexp2r  13984  expnlbnd2  14042  rlimno1  15456  lebnumii  24227  sca2rab  24774  aalioulem4  25593  aalioulem5  25594  dvradcnv  25678  tanregt0  25793  divlogrlim  25888  logccv  25916  cxplt3  25953  asinlem3  26119  rlimcxp  26221  cxp2lim  26224  divsqrtsumlem  26227  logdiflbnd  26242  lgamgulmlem2  26277  lgamgulmlem3  26278  basellem3  26330  dchrisum0lema  26760  dchrisum0lem1  26762  dchrisum0lem2a  26763  mulog2sumlem1  26780  vmalogdivsum2  26784  pntrlog2bndlem2  26824  pntlemd  26840  pntlemr  26848  ostth3  26884  nmcexi  30589  knoppndvlem18  34800  knoppndvlem20  34802  irrapxlem4  40897  irrapxlem5  40898  ioodvbdlimc1lem2  43798  ioodvbdlimc2lem  43800  stoweidlem14  43880  fourierdlem39  44012  pimrecltpos  44572  smfrec  44653
  Copyright terms: Public domain W3C validator