Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rprecred | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprecred | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpreccld 12638 | . 2 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
3 | 2 | rpred 12628 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 (class class class)co 7213 ℝcr 10728 1c1 10730 / cdiv 11489 ℝ+crp 12586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-rp 12587 |
This theorem is referenced by: xov1plusxeqvd 13086 ltexp2r 13743 expnlbnd2 13801 rlimno1 15217 lebnumii 23863 sca2rab 24409 aalioulem4 25228 aalioulem5 25229 dvradcnv 25313 tanregt0 25428 divlogrlim 25523 logccv 25551 cxplt3 25588 asinlem3 25754 rlimcxp 25856 cxp2lim 25859 divsqrtsumlem 25862 logdiflbnd 25877 lgamgulmlem2 25912 lgamgulmlem3 25913 basellem3 25965 dchrisum0lema 26395 dchrisum0lem1 26397 dchrisum0lem2a 26398 mulog2sumlem1 26415 vmalogdivsum2 26419 pntrlog2bndlem2 26459 pntlemd 26475 pntlemr 26483 ostth3 26519 nmcexi 30107 knoppndvlem18 34446 knoppndvlem20 34448 irrapxlem4 40350 irrapxlem5 40351 ioodvbdlimc1lem2 43148 ioodvbdlimc2lem 43150 stoweidlem14 43230 fourierdlem39 43362 pimrecltpos 43918 smfrec 43995 |
Copyright terms: Public domain | W3C validator |