| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprecred | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprecred | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpreccld 13054 | . 2 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| 3 | 2 | rpred 13044 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 (class class class)co 7400 ℝcr 11121 1c1 11123 / cdiv 11887 ℝ+crp 13001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-rp 13002 |
| This theorem is referenced by: xov1plusxeqvd 13505 ltexp2r 14181 expnlbnd2 14242 rlimno1 15659 lebnumii 24903 sca2rab 25452 aalioulem4 26282 aalioulem5 26283 dvradcnv 26369 tanregt0 26486 divlogrlim 26582 logccv 26610 cxplt3 26647 asinlem3 26819 rlimcxp 26922 cxp2lim 26925 divsqrtsumlem 26928 logdiflbnd 26943 lgamgulmlem2 26978 lgamgulmlem3 26979 basellem3 27031 dchrisum0lema 27463 dchrisum0lem1 27465 dchrisum0lem2a 27466 mulog2sumlem1 27483 vmalogdivsum2 27487 pntrlog2bndlem2 27527 pntlemd 27543 pntlemr 27551 ostth3 27587 nmcexi 31941 knoppndvlem18 36476 knoppndvlem20 36478 irrapxlem4 42780 irrapxlem5 42781 ioodvbdlimc1lem2 45897 ioodvbdlimc2lem 45899 stoweidlem14 45979 fourierdlem39 46111 pimrecltpos 46673 smfrec 46754 |
| Copyright terms: Public domain | W3C validator |