MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolsca Structured version   Visualization version   GIF version

Theorem ovolsca 25449
Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovolsca (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ovolsca
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 ovolsca.2 . . 3 (𝜑𝐶 ∈ ℝ+)
3 ovolsca.3 . . 3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
4 ovolsca.4 . . 3 (𝜑 → (vol*‘𝐴) ∈ ℝ)
51, 2, 3, 4ovolscalem2 25448 . 2 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
64recnd 11178 . . . 4 (𝜑 → (vol*‘𝐴) ∈ ℂ)
72rpcnd 12973 . . . 4 (𝜑𝐶 ∈ ℂ)
82rpne0d 12976 . . . 4 (𝜑𝐶 ≠ 0)
96, 7, 8divrecd 11937 . . 3 (𝜑 → ((vol*‘𝐴) / 𝐶) = ((vol*‘𝐴) · (1 / 𝐶)))
10 ssrab2 4039 . . . . . 6 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
113, 10eqsstrdi 3988 . . . . 5 (𝜑𝐵 ⊆ ℝ)
122rpreccld 12981 . . . . 5 (𝜑 → (1 / 𝐶) ∈ ℝ+)
131, 2, 3sca2rab 25446 . . . . 5 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
144, 2rerpdivcld 13002 . . . . . 6 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
15 ovollecl 25417 . . . . . 6 ((𝐵 ⊆ ℝ ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ ∧ (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) → (vol*‘𝐵) ∈ ℝ)
1611, 14, 5, 15syl3anc 1373 . . . . 5 (𝜑 → (vol*‘𝐵) ∈ ℝ)
1711, 12, 13, 16ovolscalem2 25448 . . . 4 (𝜑 → (vol*‘𝐴) ≤ ((vol*‘𝐵) / (1 / 𝐶)))
184, 16, 12lemuldivd 13020 . . . 4 (𝜑 → (((vol*‘𝐴) · (1 / 𝐶)) ≤ (vol*‘𝐵) ↔ (vol*‘𝐴) ≤ ((vol*‘𝐵) / (1 / 𝐶))))
1917, 18mpbird 257 . . 3 (𝜑 → ((vol*‘𝐴) · (1 / 𝐶)) ≤ (vol*‘𝐵))
209, 19eqbrtrd 5124 . 2 (𝜑 → ((vol*‘𝐴) / 𝐶) ≤ (vol*‘𝐵))
2116, 14letri3d 11292 . 2 (𝜑 → ((vol*‘𝐵) = ((vol*‘𝐴) / 𝐶) ↔ ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ∧ ((vol*‘𝐴) / 𝐶) ≤ (vol*‘𝐵))))
225, 20, 21mpbir2and 713 1 (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   · cmul 11049  cle 11185   / cdiv 11811  +crp 12927  vol*covol 25396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ioo 13286  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-ovol 25398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator