| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolsca | Structured version Visualization version GIF version | ||
| Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovolsca.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ovolsca.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| ovolsca.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
| ovolsca.4 | ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) |
| Ref | Expression |
|---|---|
| ovolsca | ⊢ (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | ovolsca.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 3 | ovolsca.3 | . . 3 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) | |
| 4 | ovolsca.4 | . . 3 ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) | |
| 5 | 1, 2, 3, 4 | ovolscalem2 25448 | . 2 ⊢ (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) |
| 6 | 4 | recnd 11178 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) ∈ ℂ) |
| 7 | 2 | rpcnd 12973 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 8 | 2 | rpne0d 12976 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 9 | 6, 7, 8 | divrecd 11937 | . . 3 ⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) = ((vol*‘𝐴) · (1 / 𝐶))) |
| 10 | ssrab2 4039 | . . . . . 6 ⊢ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ | |
| 11 | 3, 10 | eqsstrdi 3988 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| 12 | 2 | rpreccld 12981 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
| 13 | 1, 2, 3 | sca2rab 25446 | . . . . 5 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) |
| 14 | 4, 2 | rerpdivcld 13002 | . . . . . 6 ⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ) |
| 15 | ovollecl 25417 | . . . . . 6 ⊢ ((𝐵 ⊆ ℝ ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ ∧ (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) → (vol*‘𝐵) ∈ ℝ) | |
| 16 | 11, 14, 5, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (vol*‘𝐵) ∈ ℝ) |
| 17 | 11, 12, 13, 16 | ovolscalem2 25448 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) ≤ ((vol*‘𝐵) / (1 / 𝐶))) |
| 18 | 4, 16, 12 | lemuldivd 13020 | . . . 4 ⊢ (𝜑 → (((vol*‘𝐴) · (1 / 𝐶)) ≤ (vol*‘𝐵) ↔ (vol*‘𝐴) ≤ ((vol*‘𝐵) / (1 / 𝐶)))) |
| 19 | 17, 18 | mpbird 257 | . . 3 ⊢ (𝜑 → ((vol*‘𝐴) · (1 / 𝐶)) ≤ (vol*‘𝐵)) |
| 20 | 9, 19 | eqbrtrd 5124 | . 2 ⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ≤ (vol*‘𝐵)) |
| 21 | 16, 14 | letri3d 11292 | . 2 ⊢ (𝜑 → ((vol*‘𝐵) = ((vol*‘𝐴) / 𝐶) ↔ ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ∧ ((vol*‘𝐴) / 𝐶) ≤ (vol*‘𝐵)))) |
| 22 | 5, 20, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 1c1 11045 · cmul 11049 ≤ cle 11185 / cdiv 11811 ℝ+crp 12927 vol*covol 25396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-ioo 13286 df-ico 13288 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-ovol 25398 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |