| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolsca | Structured version Visualization version GIF version | ||
| Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovolsca.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ovolsca.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| ovolsca.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
| ovolsca.4 | ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) |
| Ref | Expression |
|---|---|
| ovolsca | ⊢ (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | ovolsca.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 3 | ovolsca.3 | . . 3 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) | |
| 4 | ovolsca.4 | . . 3 ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) | |
| 5 | 1, 2, 3, 4 | ovolscalem2 25422 | . 2 ⊢ (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) |
| 6 | 4 | recnd 11209 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) ∈ ℂ) |
| 7 | 2 | rpcnd 13004 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 8 | 2 | rpne0d 13007 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 9 | 6, 7, 8 | divrecd 11968 | . . 3 ⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) = ((vol*‘𝐴) · (1 / 𝐶))) |
| 10 | ssrab2 4046 | . . . . . 6 ⊢ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ | |
| 11 | 3, 10 | eqsstrdi 3994 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| 12 | 2 | rpreccld 13012 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
| 13 | 1, 2, 3 | sca2rab 25420 | . . . . 5 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) |
| 14 | 4, 2 | rerpdivcld 13033 | . . . . . 6 ⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ) |
| 15 | ovollecl 25391 | . . . . . 6 ⊢ ((𝐵 ⊆ ℝ ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ ∧ (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) → (vol*‘𝐵) ∈ ℝ) | |
| 16 | 11, 14, 5, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (vol*‘𝐵) ∈ ℝ) |
| 17 | 11, 12, 13, 16 | ovolscalem2 25422 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) ≤ ((vol*‘𝐵) / (1 / 𝐶))) |
| 18 | 4, 16, 12 | lemuldivd 13051 | . . . 4 ⊢ (𝜑 → (((vol*‘𝐴) · (1 / 𝐶)) ≤ (vol*‘𝐵) ↔ (vol*‘𝐴) ≤ ((vol*‘𝐵) / (1 / 𝐶)))) |
| 19 | 17, 18 | mpbird 257 | . . 3 ⊢ (𝜑 → ((vol*‘𝐴) · (1 / 𝐶)) ≤ (vol*‘𝐵)) |
| 20 | 9, 19 | eqbrtrd 5132 | . 2 ⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ≤ (vol*‘𝐵)) |
| 21 | 16, 14 | letri3d 11323 | . 2 ⊢ (𝜑 → ((vol*‘𝐵) = ((vol*‘𝐴) / 𝐶) ↔ ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ∧ ((vol*‘𝐴) / 𝐶) ≤ (vol*‘𝐵)))) |
| 22 | 5, 20, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 1c1 11076 · cmul 11080 ≤ cle 11216 / cdiv 11842 ℝ+crp 12958 vol*covol 25370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ioo 13317 df-ico 13319 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-ovol 25372 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |