MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg1lt0 Structured version   Visualization version   GIF version

Theorem neg1lt0 11746
Description: -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
neg1lt0 -1 < 0

Proof of Theorem neg1lt0
StepHypRef Expression
1 neg0 10924 . . 3 -0 = 0
2 0lt1 11154 . . 3 0 < 1
31, 2eqbrtri 5078 . 2 -0 < 1
4 1re 10633 . . 3 1 ∈ ℝ
5 0re 10635 . . 3 0 ∈ ℝ
64, 5ltnegcon1i 11183 . 2 (-1 < 0 ↔ -0 < 1)
73, 6mpbir 233 1 -1 < 0
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5057  0cc0 10529  1c1 10530   < clt 10667  -cneg 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865
This theorem is referenced by:  risefall0lem  15372  binomfallfaclem2  15386  nthruz  15598  psgnodpmr  20726  xrhmph  23543  vitalilem4  24204  vitali  24206  atanre  25455  lgsdir2lem3  25895  ballotlem1c  31758  sgnnbi  31796  sgnpbi  31797  sgnsgn  31799  sgnmulsgn  31800  signswch  31824  fz0n  32955  bcneg1  32961  cnndvlem1  33869  asindmre  34969  stoweidlem7  42282  stirlinglem6  42354  fouriersw  42506  dignn0flhalflem1  44665
  Copyright terms: Public domain W3C validator