![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg1ne0 | Structured version Visualization version GIF version |
Description: -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
neg1ne0 | ⊢ -1 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . 2 ⊢ 1 ∈ ℂ | |
2 | ax-1ne0 11253 | . 2 ⊢ 1 ≠ 0 | |
3 | 1, 2 | negne0i 11611 | 1 ⊢ -1 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 0cc0 11184 1c1 11185 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: m1expcl2 14136 m1expeven 14160 iseraltlem2 15731 iseraltlem3 15732 iseralt 15733 m1expo 16423 m1exp1 16424 psgnunilem4 19539 m1expaddsub 19540 psgnuni 19541 cnmsgnsubg 21618 cnmsgngrp 21620 psgninv 21623 iblcnlem1 25843 itgcnlem 25845 dgrsub 26332 coseq00topi 26562 logtayl2 26722 root1eq1 26816 root1cj 26817 cxpeq 26818 angneg 26864 ang180lem1 26870 1cubrlem 26902 atantayl2 26999 basellem2 27143 isnsqf 27196 dchrfi 27317 dchrptlem1 27326 dchrptlem2 27327 lgsne0 27397 lgseisenlem1 27437 lgseisenlem2 27438 lgseisenlem4 27440 lgseisen 27441 lgsquadlem1 27442 lgsquad2lem1 27446 lgsquad3 27449 m1lgs 27450 hvsubcan 31106 hvsubcan2 31107 superpos 32386 sgnnbi 34510 signswch 34538 signstfvcl 34550 fwddifnp1 36129 proot1ex 43157 m1expevenALTV 47521 m1expoddALTV 47522 |
Copyright terms: Public domain | W3C validator |