| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1ne0 | Structured version Visualization version GIF version | ||
| Description: -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1ne0 | ⊢ -1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | ax-1ne0 11137 | . 2 ⊢ 1 ≠ 0 | |
| 3 | 1, 2 | negne0i 11497 | 1 ⊢ -1 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 0cc0 11068 1c1 11069 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: m1expcl2 14050 m1expeven 14074 iseraltlem2 15649 iseraltlem3 15650 iseralt 15651 m1expo 16345 m1exp1 16346 psgnunilem4 19427 m1expaddsub 19428 psgnuni 19429 cnmsgnsubg 21486 cnmsgngrp 21488 psgninv 21491 iblcnlem1 25689 itgcnlem 25691 dgrsub 26178 coseq00topi 26411 logtayl2 26571 root1eq1 26665 root1cj 26666 cxpeq 26667 angneg 26713 ang180lem1 26719 1cubrlem 26751 atantayl2 26848 basellem2 26992 isnsqf 27045 dchrfi 27166 dchrptlem1 27175 dchrptlem2 27176 lgsne0 27246 lgseisenlem1 27286 lgseisenlem2 27287 lgseisenlem4 27289 lgseisen 27290 lgsquadlem1 27291 lgsquad2lem1 27295 lgsquad3 27298 m1lgs 27299 hvsubcan 31003 hvsubcan2 31004 superpos 32283 sgnnbi 32763 cos9thpiminplylem1 33772 signswch 34552 signstfvcl 34564 fwddifnp1 36153 proot1ex 43185 m1expevenALTV 47648 m1expoddALTV 47649 |
| Copyright terms: Public domain | W3C validator |