| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1ne0 | Structured version Visualization version GIF version | ||
| Description: -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1ne0 | ⊢ -1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | ax-1ne0 11144 | . 2 ⊢ 1 ≠ 0 | |
| 3 | 1, 2 | negne0i 11504 | 1 ⊢ -1 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2926 0cc0 11075 1c1 11076 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: m1expcl2 14057 m1expeven 14081 iseraltlem2 15656 iseraltlem3 15657 iseralt 15658 m1expo 16352 m1exp1 16353 psgnunilem4 19434 m1expaddsub 19435 psgnuni 19436 cnmsgnsubg 21493 cnmsgngrp 21495 psgninv 21498 iblcnlem1 25696 itgcnlem 25698 dgrsub 26185 coseq00topi 26418 logtayl2 26578 root1eq1 26672 root1cj 26673 cxpeq 26674 angneg 26720 ang180lem1 26726 1cubrlem 26758 atantayl2 26855 basellem2 26999 isnsqf 27052 dchrfi 27173 dchrptlem1 27182 dchrptlem2 27183 lgsne0 27253 lgseisenlem1 27293 lgseisenlem2 27294 lgseisenlem4 27296 lgseisen 27297 lgsquadlem1 27298 lgsquad2lem1 27302 lgsquad3 27305 m1lgs 27306 hvsubcan 31010 hvsubcan2 31011 superpos 32290 sgnnbi 32770 cos9thpiminplylem1 33779 signswch 34559 signstfvcl 34571 fwddifnp1 36160 proot1ex 43192 m1expevenALTV 47652 m1expoddALTV 47653 |
| Copyright terms: Public domain | W3C validator |