| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1ne0 | Structured version Visualization version GIF version | ||
| Description: -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1ne0 | ⊢ -1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11102 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | ax-1ne0 11113 | . 2 ⊢ 1 ≠ 0 | |
| 3 | 1, 2 | negne0i 11473 | 1 ⊢ -1 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 0cc0 11044 1c1 11045 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: m1expcl2 14026 m1expeven 14050 iseraltlem2 15625 iseraltlem3 15626 iseralt 15627 m1expo 16321 m1exp1 16322 psgnunilem4 19411 m1expaddsub 19412 psgnuni 19413 cnmsgnsubg 21519 cnmsgngrp 21521 psgninv 21524 iblcnlem1 25722 itgcnlem 25724 dgrsub 26211 coseq00topi 26444 logtayl2 26604 root1eq1 26698 root1cj 26699 cxpeq 26700 angneg 26746 ang180lem1 26752 1cubrlem 26784 atantayl2 26881 basellem2 27025 isnsqf 27078 dchrfi 27199 dchrptlem1 27208 dchrptlem2 27209 lgsne0 27279 lgseisenlem1 27319 lgseisenlem2 27320 lgseisenlem4 27322 lgseisen 27323 lgsquadlem1 27324 lgsquad2lem1 27328 lgsquad3 27331 m1lgs 27332 hvsubcan 31053 hvsubcan2 31054 superpos 32333 sgnnbi 32813 cos9thpiminplylem1 33765 signswch 34545 signstfvcl 34557 fwddifnp1 36146 proot1ex 43178 m1expevenALTV 47641 m1expoddALTV 47642 |
| Copyright terms: Public domain | W3C validator |