MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg1ne0 Structured version   Visualization version   GIF version

Theorem neg1ne0 12019
Description: -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
neg1ne0 -1 ≠ 0

Proof of Theorem neg1ne0
StepHypRef Expression
1 ax-1cn 10860 . 2 1 ∈ ℂ
2 ax-1ne0 10871 . 2 1 ≠ 0
31, 2negne0i 11226 1 -1 ≠ 0
Colors of variables: wff setvar class
Syntax hints:  wne 2942  0cc0 10802  1c1 10803  -cneg 11136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138
This theorem is referenced by:  m1expcl2  13732  m1expeven  13758  iseraltlem2  15322  iseraltlem3  15323  iseralt  15324  m1expo  16012  m1exp1  16013  psgnunilem4  19020  m1expaddsub  19021  psgnuni  19022  cnmsgnsubg  20694  cnmsgngrp  20696  psgninv  20699  iblcnlem1  24857  itgcnlem  24859  dgrsub  25338  coseq00topi  25564  logtayl2  25722  root1eq1  25813  root1cj  25814  cxpeq  25815  angneg  25858  ang180lem1  25864  1cubrlem  25896  atantayl2  25993  basellem2  26136  isnsqf  26189  dchrfi  26308  dchrptlem1  26317  dchrptlem2  26318  lgsne0  26388  lgseisenlem1  26428  lgseisenlem2  26429  lgseisenlem4  26431  lgseisen  26432  lgsquadlem1  26433  lgsquad2lem1  26437  lgsquad3  26440  m1lgs  26441  hvsubcan  29337  hvsubcan2  29338  superpos  30617  sgnnbi  32412  signswch  32440  signstfvcl  32452  fwddifnp1  34394  proot1ex  40942  m1expevenALTV  44987  m1expoddALTV  44988
  Copyright terms: Public domain W3C validator