Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trljco2 | Structured version Visualization version GIF version |
Description: Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.) |
Ref | Expression |
---|---|
trljco.j | ⊢ ∨ = (join‘𝐾) |
trljco.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trljco.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trljco.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trljco2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1197 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ HL) | |
2 | 1 | hllatd 37578 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ Lat) |
3 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | trljco.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | trljco.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | trljco.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
7 | 3, 4, 5, 6 | trlcl 38378 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
8 | 7 | 3adant3 1132 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
9 | 3, 4, 5, 6 | trlcl 38378 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
10 | 9 | 3adant2 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
11 | trljco.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
12 | 3, 11 | latjcom 18214 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘𝐺) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
13 | 2, 8, 10, 12 | syl3anc 1371 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
14 | 11, 4, 5, 6 | trljco 38954 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹))) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
15 | 14 | 3com23 1126 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹))) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
16 | 13, 15 | eqtr4d 2779 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹)))) |
17 | 11, 4, 5, 6 | trljco 38954 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
18 | 4, 5 | ltrncom 38952 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
19 | 18 | fveq2d 6808 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) = (𝑅‘(𝐺 ∘ 𝐹))) |
20 | 19 | oveq2d 7323 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹)))) |
21 | 16, 17, 20 | 3eqtr4d 2786 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∘ ccom 5604 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 joincjn 18078 Latclat 18198 HLchlt 37564 LHypclh 38198 LTrncltrn 38315 trLctrl 38372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-riotaBAD 37167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-undef 8120 df-map 8648 df-proset 18062 df-poset 18080 df-plt 18097 df-lub 18113 df-glb 18114 df-join 18115 df-meet 18116 df-p0 18192 df-p1 18193 df-lat 18199 df-clat 18266 df-oposet 37390 df-ol 37392 df-oml 37393 df-covers 37480 df-ats 37481 df-atl 37512 df-cvlat 37536 df-hlat 37565 df-llines 37712 df-lplanes 37713 df-lvols 37714 df-lines 37715 df-psubsp 37717 df-pmap 37718 df-padd 38010 df-lhyp 38202 df-laut 38203 df-ldil 38318 df-ltrn 38319 df-trl 38373 |
This theorem is referenced by: cdlemh1 39029 |
Copyright terms: Public domain | W3C validator |