Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco2 Structured version   Visualization version   GIF version

Theorem trljco2 40246
Description: Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.)
Hypotheses
Ref Expression
trljco.j ∨ = (joinβ€˜πΎ)
trljco.h 𝐻 = (LHypβ€˜πΎ)
trljco.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trljco.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trljco2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐹 ∘ 𝐺))) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜(𝐹 ∘ 𝐺))))

Proof of Theorem trljco2
StepHypRef Expression
1 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ 𝐾 ∈ HL)
21hllatd 38868 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ 𝐾 ∈ Lat)
3 eqid 2728 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4 trljco.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
5 trljco.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 trljco.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
73, 4, 5, 6trlcl 39669 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
873adant3 1129 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
93, 4, 5, 6trlcl 39669 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ))
1093adant2 1128 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ))
11 trljco.j . . . . 5 ∨ = (joinβ€˜πΎ)
123, 11latjcom 18446 . . . 4 ((𝐾 ∈ Lat ∧ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ) ∧ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ)) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜πΊ)) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜πΉ)))
132, 8, 10, 12syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜πΊ)) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜πΉ)))
1411, 4, 5, 6trljco 40245 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) β†’ ((π‘…β€˜πΊ) ∨ (π‘…β€˜(𝐺 ∘ 𝐹))) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜πΉ)))
15143com23 1123 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΊ) ∨ (π‘…β€˜(𝐺 ∘ 𝐹))) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜πΉ)))
1613, 15eqtr4d 2771 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜πΊ)) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜(𝐺 ∘ 𝐹))))
1711, 4, 5, 6trljco 40245 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐹 ∘ 𝐺))) = ((π‘…β€˜πΉ) ∨ (π‘…β€˜πΊ)))
184, 5ltrncom 40243 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹))
1918fveq2d 6906 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜(𝐹 ∘ 𝐺)) = (π‘…β€˜(𝐺 ∘ 𝐹)))
2019oveq2d 7442 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΊ) ∨ (π‘…β€˜(𝐹 ∘ 𝐺))) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜(𝐺 ∘ 𝐹))))
2116, 17, 203eqtr4d 2778 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐹 ∘ 𝐺))) = ((π‘…β€˜πΊ) ∨ (π‘…β€˜(𝐹 ∘ 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ∘ ccom 5686  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  joincjn 18310  Latclat 18430  HLchlt 38854  LHypclh 39489  LTrncltrn 39606  trLctrl 39663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-riotaBAD 38457
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-undef 8285  df-map 8853  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005  df-lines 39006  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664
This theorem is referenced by:  cdlemh1  40320
  Copyright terms: Public domain W3C validator