![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trljco2 | Structured version Visualization version GIF version |
Description: Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.) |
Ref | Expression |
---|---|
trljco.j | ⊢ ∨ = (join‘𝐾) |
trljco.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trljco.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trljco.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trljco2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1211 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ HL) | |
2 | 1 | hllatd 35520 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ Lat) |
3 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | trljco.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | trljco.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | trljco.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
7 | 3, 4, 5, 6 | trlcl 36320 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
8 | 7 | 3adant3 1123 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
9 | 3, 4, 5, 6 | trlcl 36320 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
10 | 9 | 3adant2 1122 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
11 | trljco.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
12 | 3, 11 | latjcom 17445 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘𝐺) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
13 | 2, 8, 10, 12 | syl3anc 1439 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
14 | 11, 4, 5, 6 | trljco 36896 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹))) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
15 | 14 | 3com23 1117 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹))) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
16 | 13, 15 | eqtr4d 2817 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹)))) |
17 | 11, 4, 5, 6 | trljco 36896 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
18 | 4, 5 | ltrncom 36894 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
19 | 18 | fveq2d 6450 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) = (𝑅‘(𝐺 ∘ 𝐹))) |
20 | 19 | oveq2d 6938 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹)))) |
21 | 16, 17, 20 | 3eqtr4d 2824 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∘ ccom 5359 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 joincjn 17330 Latclat 17431 HLchlt 35506 LHypclh 36140 LTrncltrn 36257 trLctrl 36314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-riotaBAD 35109 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-undef 7681 df-map 8142 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-oposet 35332 df-ol 35334 df-oml 35335 df-covers 35422 df-ats 35423 df-atl 35454 df-cvlat 35478 df-hlat 35507 df-llines 35654 df-lplanes 35655 df-lvols 35656 df-lines 35657 df-psubsp 35659 df-pmap 35660 df-padd 35952 df-lhyp 36144 df-laut 36145 df-ldil 36260 df-ltrn 36261 df-trl 36315 |
This theorem is referenced by: cdlemh1 36971 |
Copyright terms: Public domain | W3C validator |