Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmulid1 | Structured version Visualization version GIF version |
Description: Extended real version of mulid1 11074. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulid1 | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12953 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | 1re 11076 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | rexmul 13106 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ·e 1) = (𝐴 · 1)) | |
4 | 2, 3 | mpan2 688 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = (𝐴 · 1)) |
5 | ax-1rid 11042 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
6 | 4, 5 | eqtrd 2776 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = 𝐴) |
7 | 1xr 11135 | . . . . 5 ⊢ 1 ∈ ℝ* | |
8 | 0lt1 11598 | . . . . 5 ⊢ 0 < 1 | |
9 | xmulpnf2 13110 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (+∞ ·e 1) = +∞) | |
10 | 7, 8, 9 | mp2an 689 | . . . 4 ⊢ (+∞ ·e 1) = +∞ |
11 | oveq1 7344 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = (+∞ ·e 1)) | |
12 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
13 | 10, 11, 12 | 3eqtr4a 2802 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = 𝐴) |
14 | xmulmnf2 13112 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (-∞ ·e 1) = -∞) | |
15 | 7, 8, 14 | mp2an 689 | . . . 4 ⊢ (-∞ ·e 1) = -∞ |
16 | oveq1 7344 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = (-∞ ·e 1)) | |
17 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
18 | 15, 16, 17 | 3eqtr4a 2802 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = 𝐴) |
19 | 6, 13, 18 | 3jaoi 1426 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ·e 1) = 𝐴) |
20 | 1, 19 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 (class class class)co 7337 ℝcr 10971 0cc0 10972 1c1 10973 · cmul 10977 +∞cpnf 11107 -∞cmnf 11108 ℝ*cxr 11109 < clt 11110 ·e cxmu 12948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-xneg 12949 df-xmul 12951 |
This theorem is referenced by: xmulid2 13115 xlemul1 13125 xrsmcmn 20727 nmoi2 24000 xdivrec 31488 omssubadd 32567 |
Copyright terms: Public domain | W3C validator |