MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulid1 Structured version   Visualization version   GIF version

Theorem xmulid1 12421
Description: Extended real version of mulid1 10374. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulid1 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)

Proof of Theorem xmulid1
StepHypRef Expression
1 elxr 12261 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 1re 10376 . . . . 5 1 ∈ ℝ
3 rexmul 12413 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ·e 1) = (𝐴 · 1))
42, 3mpan2 681 . . . 4 (𝐴 ∈ ℝ → (𝐴 ·e 1) = (𝐴 · 1))
5 ax-1rid 10342 . . . 4 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
64, 5eqtrd 2814 . . 3 (𝐴 ∈ ℝ → (𝐴 ·e 1) = 𝐴)
7 1xr 10436 . . . . 5 1 ∈ ℝ*
8 0lt1 10897 . . . . 5 0 < 1
9 xmulpnf2 12417 . . . . 5 ((1 ∈ ℝ* ∧ 0 < 1) → (+∞ ·e 1) = +∞)
107, 8, 9mp2an 682 . . . 4 (+∞ ·e 1) = +∞
11 oveq1 6929 . . . 4 (𝐴 = +∞ → (𝐴 ·e 1) = (+∞ ·e 1))
12 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1310, 11, 123eqtr4a 2840 . . 3 (𝐴 = +∞ → (𝐴 ·e 1) = 𝐴)
14 xmulmnf2 12419 . . . . 5 ((1 ∈ ℝ* ∧ 0 < 1) → (-∞ ·e 1) = -∞)
157, 8, 14mp2an 682 . . . 4 (-∞ ·e 1) = -∞
16 oveq1 6929 . . . 4 (𝐴 = -∞ → (𝐴 ·e 1) = (-∞ ·e 1))
17 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
1815, 16, 173eqtr4a 2840 . . 3 (𝐴 = -∞ → (𝐴 ·e 1) = 𝐴)
196, 13, 183jaoi 1501 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ·e 1) = 𝐴)
201, 19sylbi 209 1 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1070   = wceq 1601  wcel 2107   class class class wbr 4886  (class class class)co 6922  cr 10271  0cc0 10272  1c1 10273   · cmul 10277  +∞cpnf 10408  -∞cmnf 10409  *cxr 10410   < clt 10411   ·e cxmu 12256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-xneg 12257  df-xmul 12259
This theorem is referenced by:  xmulid2  12422  xlemul1  12432  xrsmcmn  20165  nmoi2  22942  xdivrec  30197  omssubadd  30960
  Copyright terms: Public domain W3C validator