MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulid1 Structured version   Visualization version   GIF version

Theorem xmulid1 12995
Description: Extended real version of mulid1 10957. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulid1 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)

Proof of Theorem xmulid1
StepHypRef Expression
1 elxr 12834 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 1re 10959 . . . . 5 1 ∈ ℝ
3 rexmul 12987 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ·e 1) = (𝐴 · 1))
42, 3mpan2 687 . . . 4 (𝐴 ∈ ℝ → (𝐴 ·e 1) = (𝐴 · 1))
5 ax-1rid 10925 . . . 4 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
64, 5eqtrd 2779 . . 3 (𝐴 ∈ ℝ → (𝐴 ·e 1) = 𝐴)
7 1xr 11018 . . . . 5 1 ∈ ℝ*
8 0lt1 11480 . . . . 5 0 < 1
9 xmulpnf2 12991 . . . . 5 ((1 ∈ ℝ* ∧ 0 < 1) → (+∞ ·e 1) = +∞)
107, 8, 9mp2an 688 . . . 4 (+∞ ·e 1) = +∞
11 oveq1 7275 . . . 4 (𝐴 = +∞ → (𝐴 ·e 1) = (+∞ ·e 1))
12 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1310, 11, 123eqtr4a 2805 . . 3 (𝐴 = +∞ → (𝐴 ·e 1) = 𝐴)
14 xmulmnf2 12993 . . . . 5 ((1 ∈ ℝ* ∧ 0 < 1) → (-∞ ·e 1) = -∞)
157, 8, 14mp2an 688 . . . 4 (-∞ ·e 1) = -∞
16 oveq1 7275 . . . 4 (𝐴 = -∞ → (𝐴 ·e 1) = (-∞ ·e 1))
17 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
1815, 16, 173eqtr4a 2805 . . 3 (𝐴 = -∞ → (𝐴 ·e 1) = 𝐴)
196, 13, 183jaoi 1425 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ·e 1) = 𝐴)
201, 19sylbi 216 1 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084   = wceq 1541  wcel 2109   class class class wbr 5078  (class class class)co 7268  cr 10854  0cc0 10855  1c1 10856   · cmul 10860  +∞cpnf 10990  -∞cmnf 10991  *cxr 10992   < clt 10993   ·e cxmu 12829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-xneg 12830  df-xmul 12832
This theorem is referenced by:  xmulid2  12996  xlemul1  13006  xrsmcmn  20602  nmoi2  23875  xdivrec  31180  omssubadd  32246
  Copyright terms: Public domain W3C validator