MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi2 Structured version   Visualization version   GIF version

Theorem nmoi2 24766
Description: The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
Assertion
Ref Expression
nmoi2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))

Proof of Theorem nmoi2
StepHypRef Expression
1 simpl2 1191 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝑇 ∈ NrmGrp)
2 simpl3 1192 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
3 nmoi.2 . . . . . . . 8 𝑉 = (Base‘𝑆)
4 eqid 2734 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
53, 4ghmf 19250 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
62, 5syl 17 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝐹:𝑉⟶(Base‘𝑇))
7 simprl 771 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝑋𝑉)
86, 7ffvelcdmd 7104 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐹𝑋) ∈ (Base‘𝑇))
9 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
104, 9nmcl 24644 . . . . 5 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
111, 8, 10syl2anc 584 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
1211rexrd 11308 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
13 nmofval.1 . . . . . 6 𝑁 = (𝑆 normOp 𝑇)
1413nmocl 24756 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
1514adantr 480 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑁𝐹) ∈ ℝ*)
16 nmoi.3 . . . . . . . 8 𝐿 = (norm‘𝑆)
17 nmoi2.z . . . . . . . 8 0 = (0g𝑆)
183, 16, 17nmrpcl 24648 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋0 ) → (𝐿𝑋) ∈ ℝ+)
19183expb 1119 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ+)
20193ad2antl1 1184 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ+)
2120rpxrd 13075 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ*)
2215, 21xmulcld 13340 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e (𝐿𝑋)) ∈ ℝ*)
2320rpreccld 13084 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ+)
2423rpxrd 13075 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ*)
2523rpge0d 13078 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 0 ≤ (1 / (𝐿𝑋)))
2624, 25jca 511 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((1 / (𝐿𝑋)) ∈ ℝ* ∧ 0 ≤ (1 / (𝐿𝑋))))
2713, 3, 16, 9nmoix 24765 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
2827adantrr 717 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
29 xlemul1a 13326 . . 3 ((((𝑀‘(𝐹𝑋)) ∈ ℝ* ∧ ((𝑁𝐹) ·e (𝐿𝑋)) ∈ ℝ* ∧ ((1 / (𝐿𝑋)) ∈ ℝ* ∧ 0 ≤ (1 / (𝐿𝑋)))) ∧ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋))) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) ≤ (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))))
3012, 22, 26, 28, 29syl31anc 1372 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) ≤ (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))))
3123rpred 13074 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ)
32 rexmul 13309 . . . 4 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ (1 / (𝐿𝑋)) ∈ ℝ) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3311, 31, 32syl2anc 584 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3411recnd 11286 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℂ)
3520rpcnd 13076 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℂ)
3620rpne0d 13079 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ≠ 0)
3734, 35, 36divrecd 12043 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3833, 37eqtr4d 2777 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)))
39 xmulass 13325 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝐿𝑋) ∈ ℝ* ∧ (1 / (𝐿𝑋)) ∈ ℝ*) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))))
4015, 21, 24, 39syl3anc 1370 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))))
4120rpred 13074 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ)
42 rexmul 13309 . . . . . 6 (((𝐿𝑋) ∈ ℝ ∧ (1 / (𝐿𝑋)) ∈ ℝ) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = ((𝐿𝑋) · (1 / (𝐿𝑋))))
4341, 31, 42syl2anc 584 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = ((𝐿𝑋) · (1 / (𝐿𝑋))))
4435, 36recidd 12035 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) · (1 / (𝐿𝑋))) = 1)
4543, 44eqtrd 2774 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = 1)
4645oveq2d 7446 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))) = ((𝑁𝐹) ·e 1))
47 xmulrid 13317 . . . 4 ((𝑁𝐹) ∈ ℝ* → ((𝑁𝐹) ·e 1) = (𝑁𝐹))
4815, 47syl 17 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e 1) = (𝑁𝐹))
4940, 46, 483eqtrd 2778 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = (𝑁𝐹))
5030, 38, 493brtr3d 5178 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  wf 6558  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  *cxr 11291  cle 11293   / cdiv 11917  +crp 13031   ·e cxmu 13150  Basecbs 17244  0gc0g 17485   GrpHom cghm 19242  normcnm 24604  NrmGrpcngp 24605   normOp cnmo 24741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-0g 17487  df-topgen 17489  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-ghm 19243  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-nmo 24744  df-nghm 24745
This theorem is referenced by:  nmoleub  24767
  Copyright terms: Public domain W3C validator