Proof of Theorem nmoi2
Step | Hyp | Ref
| Expression |
1 | | simpl2 1191 |
. . . . 5
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → 𝑇 ∈ NrmGrp) |
2 | | simpl3 1192 |
. . . . . . 7
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
3 | | nmoi.2 |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑆) |
4 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑇) =
(Base‘𝑇) |
5 | 3, 4 | ghmf 18838 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
6 | 2, 5 | syl 17 |
. . . . . 6
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → 𝐹:𝑉⟶(Base‘𝑇)) |
7 | | simprl 768 |
. . . . . 6
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝑉) |
8 | 6, 7 | ffvelrnd 6962 |
. . . . 5
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ (Base‘𝑇)) |
9 | | nmoi.4 |
. . . . . 6
⊢ 𝑀 = (norm‘𝑇) |
10 | 4, 9 | nmcl 23772 |
. . . . 5
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹‘𝑋)) ∈ ℝ) |
11 | 1, 8, 10 | syl2anc 584 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝑀‘(𝐹‘𝑋)) ∈ ℝ) |
12 | 11 | rexrd 11025 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝑀‘(𝐹‘𝑋)) ∈
ℝ*) |
13 | | nmofval.1 |
. . . . . 6
⊢ 𝑁 = (𝑆 normOp 𝑇) |
14 | 13 | nmocl 23884 |
. . . . 5
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) ∈
ℝ*) |
15 | 14 | adantr 481 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝑁‘𝐹) ∈
ℝ*) |
16 | | nmoi.3 |
. . . . . . . 8
⊢ 𝐿 = (norm‘𝑆) |
17 | | nmoi2.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝑆) |
18 | 3, 16, 17 | nmrpcl 23776 |
. . . . . . 7
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝐿‘𝑋) ∈
ℝ+) |
19 | 18 | 3expb 1119 |
. . . . . 6
⊢ ((𝑆 ∈ NrmGrp ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝐿‘𝑋) ∈
ℝ+) |
20 | 19 | 3ad2antl1 1184 |
. . . . 5
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝐿‘𝑋) ∈
ℝ+) |
21 | 20 | rpxrd 12773 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝐿‘𝑋) ∈
ℝ*) |
22 | 15, 21 | xmulcld 13036 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑁‘𝐹) ·e (𝐿‘𝑋)) ∈
ℝ*) |
23 | 20 | rpreccld 12782 |
. . . . 5
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (1 / (𝐿‘𝑋)) ∈
ℝ+) |
24 | 23 | rpxrd 12773 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (1 / (𝐿‘𝑋)) ∈
ℝ*) |
25 | 23 | rpge0d 12776 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → 0 ≤ (1 /
(𝐿‘𝑋))) |
26 | 24, 25 | jca 512 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((1 / (𝐿‘𝑋)) ∈ ℝ* ∧ 0 ≤
(1 / (𝐿‘𝑋)))) |
27 | 13, 3, 16, 9 | nmoix 23893 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) ·e (𝐿‘𝑋))) |
28 | 27 | adantrr 714 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) ·e (𝐿‘𝑋))) |
29 | | xlemul1a 13022 |
. . 3
⊢ ((((𝑀‘(𝐹‘𝑋)) ∈ ℝ* ∧ ((𝑁‘𝐹) ·e (𝐿‘𝑋)) ∈ ℝ* ∧ ((1 /
(𝐿‘𝑋)) ∈ ℝ* ∧ 0 ≤
(1 / (𝐿‘𝑋)))) ∧ (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) ·e (𝐿‘𝑋))) → ((𝑀‘(𝐹‘𝑋)) ·e (1 / (𝐿‘𝑋))) ≤ (((𝑁‘𝐹) ·e (𝐿‘𝑋)) ·e (1 / (𝐿‘𝑋)))) |
30 | 12, 22, 26, 28, 29 | syl31anc 1372 |
. 2
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) ·e (1 / (𝐿‘𝑋))) ≤ (((𝑁‘𝐹) ·e (𝐿‘𝑋)) ·e (1 / (𝐿‘𝑋)))) |
31 | 23 | rpred 12772 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (1 / (𝐿‘𝑋)) ∈ ℝ) |
32 | | rexmul 13005 |
. . . 4
⊢ (((𝑀‘(𝐹‘𝑋)) ∈ ℝ ∧ (1 / (𝐿‘𝑋)) ∈ ℝ) → ((𝑀‘(𝐹‘𝑋)) ·e (1 / (𝐿‘𝑋))) = ((𝑀‘(𝐹‘𝑋)) · (1 / (𝐿‘𝑋)))) |
33 | 11, 31, 32 | syl2anc 584 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) ·e (1 / (𝐿‘𝑋))) = ((𝑀‘(𝐹‘𝑋)) · (1 / (𝐿‘𝑋)))) |
34 | 11 | recnd 11003 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝑀‘(𝐹‘𝑋)) ∈ ℂ) |
35 | 20 | rpcnd 12774 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝐿‘𝑋) ∈ ℂ) |
36 | 20 | rpne0d 12777 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝐿‘𝑋) ≠ 0) |
37 | 34, 35, 36 | divrecd 11754 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) = ((𝑀‘(𝐹‘𝑋)) · (1 / (𝐿‘𝑋)))) |
38 | 33, 37 | eqtr4d 2781 |
. 2
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) ·e (1 / (𝐿‘𝑋))) = ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋))) |
39 | | xmulass 13021 |
. . . 4
⊢ (((𝑁‘𝐹) ∈ ℝ* ∧ (𝐿‘𝑋) ∈ ℝ* ∧ (1 /
(𝐿‘𝑋)) ∈ ℝ*) →
(((𝑁‘𝐹) ·e (𝐿‘𝑋)) ·e (1 / (𝐿‘𝑋))) = ((𝑁‘𝐹) ·e ((𝐿‘𝑋) ·e (1 / (𝐿‘𝑋))))) |
40 | 15, 21, 24, 39 | syl3anc 1370 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (((𝑁‘𝐹) ·e (𝐿‘𝑋)) ·e (1 / (𝐿‘𝑋))) = ((𝑁‘𝐹) ·e ((𝐿‘𝑋) ·e (1 / (𝐿‘𝑋))))) |
41 | 20 | rpred 12772 |
. . . . . 6
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (𝐿‘𝑋) ∈ ℝ) |
42 | | rexmul 13005 |
. . . . . 6
⊢ (((𝐿‘𝑋) ∈ ℝ ∧ (1 / (𝐿‘𝑋)) ∈ ℝ) → ((𝐿‘𝑋) ·e (1 / (𝐿‘𝑋))) = ((𝐿‘𝑋) · (1 / (𝐿‘𝑋)))) |
43 | 41, 31, 42 | syl2anc 584 |
. . . . 5
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝐿‘𝑋) ·e (1 / (𝐿‘𝑋))) = ((𝐿‘𝑋) · (1 / (𝐿‘𝑋)))) |
44 | 35, 36 | recidd 11746 |
. . . . 5
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝐿‘𝑋) · (1 / (𝐿‘𝑋))) = 1) |
45 | 43, 44 | eqtrd 2778 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝐿‘𝑋) ·e (1 / (𝐿‘𝑋))) = 1) |
46 | 45 | oveq2d 7291 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑁‘𝐹) ·e ((𝐿‘𝑋) ·e (1 / (𝐿‘𝑋)))) = ((𝑁‘𝐹) ·e 1)) |
47 | | xmulid1 13013 |
. . . 4
⊢ ((𝑁‘𝐹) ∈ ℝ* → ((𝑁‘𝐹) ·e 1) = (𝑁‘𝐹)) |
48 | 15, 47 | syl 17 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑁‘𝐹) ·e 1) = (𝑁‘𝐹)) |
49 | 40, 46, 48 | 3eqtrd 2782 |
. 2
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → (((𝑁‘𝐹) ·e (𝐿‘𝑋)) ·e (1 / (𝐿‘𝑋))) = (𝑁‘𝐹)) |
50 | 30, 38, 49 | 3brtr3d 5105 |
1
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹)) |