| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zn0subs | Structured version Visualization version GIF version | ||
| Description: The non-negative difference of surreal integers is a non-negative integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
| Ref | Expression |
|---|---|
| zn0subs | ⊢ ((𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zno 28316 | . . . . . 6 ⊢ (𝑁 ∈ ℤs → 𝑁 ∈ No ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → 𝑁 ∈ No ) |
| 3 | zno 28316 | . . . . . 6 ⊢ (𝑀 ∈ ℤs → 𝑀 ∈ No ) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → 𝑀 ∈ No ) |
| 5 | 2, 4 | subsge0d 28049 | . . . 4 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → ( 0s ≤s (𝑁 -s 𝑀) ↔ 𝑀 ≤s 𝑁)) |
| 6 | simpl 482 | . . . . . 6 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → 𝑁 ∈ ℤs) | |
| 7 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → 𝑀 ∈ ℤs) | |
| 8 | 6, 7 | zsubscld 28330 | . . . . 5 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → (𝑁 -s 𝑀) ∈ ℤs) |
| 9 | 8 | biantrurd 532 | . . . 4 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → ( 0s ≤s (𝑁 -s 𝑀) ↔ ((𝑁 -s 𝑀) ∈ ℤs ∧ 0s ≤s (𝑁 -s 𝑀)))) |
| 10 | 5, 9 | bitr3d 281 | . . 3 ⊢ ((𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs) → (𝑀 ≤s 𝑁 ↔ ((𝑁 -s 𝑀) ∈ ℤs ∧ 0s ≤s (𝑁 -s 𝑀)))) |
| 11 | 10 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs) → (𝑀 ≤s 𝑁 ↔ ((𝑁 -s 𝑀) ∈ ℤs ∧ 0s ≤s (𝑁 -s 𝑀)))) |
| 12 | eln0zs 28334 | . 2 ⊢ ((𝑁 -s 𝑀) ∈ ℕ0s ↔ ((𝑁 -s 𝑀) ∈ ℤs ∧ 0s ≤s (𝑁 -s 𝑀))) | |
| 13 | 11, 12 | bitr4di 289 | 1 ⊢ ((𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 No csur 27588 ≤s csle 27693 0s c0s 27776 -s csubs 27972 ℕ0scnn0s 28252 ℤsczs 28312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-1s 27779 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 df-subs 27974 df-n0s 28254 df-nns 28255 df-zs 28313 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |