MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5uzs Structured version   Visualization version   GIF version

Theorem peano5uzs 28408
Description: Peano's inductive postulate for upper surreal integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Hypotheses
Ref Expression
peano5uzs.1 (𝜑𝑁 ∈ ℤs)
peano5uzs.2 (𝜑𝑁𝐴)
peano5uzs.3 ((𝜑𝑥𝐴) → (𝑥 +s 1s ) ∈ 𝐴)
Assertion
Ref Expression
peano5uzs (𝜑 → {𝑘 ∈ ℤs𝑁 ≤s 𝑘} ⊆ 𝐴)
Distinct variable groups:   𝑘,𝑁,𝑥   𝜑,𝑥,𝑘   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem peano5uzs
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . 4 (𝑘 = 𝑛 → (𝑁 ≤s 𝑘𝑁 ≤s 𝑛))
21elrab 3708 . . 3 (𝑛 ∈ {𝑘 ∈ ℤs𝑁 ≤s 𝑘} ↔ (𝑛 ∈ ℤs𝑁 ≤s 𝑛))
3 zno 28386 . . . . . . 7 (𝑛 ∈ ℤs𝑛 No )
43adantr 480 . . . . . 6 ((𝑛 ∈ ℤs𝑁 ≤s 𝑛) → 𝑛 No )
5 peano5uzs.1 . . . . . . 7 (𝜑𝑁 ∈ ℤs)
65znod 28387 . . . . . 6 (𝜑𝑁 No )
7 npcans 28123 . . . . . 6 ((𝑛 No 𝑁 No ) → ((𝑛 -s 𝑁) +s 𝑁) = 𝑛)
84, 6, 7syl2anr 596 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → ((𝑛 -s 𝑁) +s 𝑁) = 𝑛)
9 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → 𝑛 ∈ ℤs)
105adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → 𝑁 ∈ ℤs)
119, 10zsubscld 28400 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → (𝑛 -s 𝑁) ∈ ℤs)
123adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℤs) → 𝑛 No )
136adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℤs) → 𝑁 No )
1412, 13subsge0d 28147 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℤs) → ( 0s ≤s (𝑛 -s 𝑁) ↔ 𝑁 ≤s 𝑛))
1514biimpar 477 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℤs) ∧ 𝑁 ≤s 𝑛) → 0s ≤s (𝑛 -s 𝑁))
1615anasss 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → 0s ≤s (𝑛 -s 𝑁))
1711, 16jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → ((𝑛 -s 𝑁) ∈ ℤs ∧ 0s ≤s (𝑛 -s 𝑁)))
18 eln0zs 28404 . . . . . . . . 9 ((𝑛 -s 𝑁) ∈ ℕ0s ↔ ((𝑛 -s 𝑁) ∈ ℤs ∧ 0s ≤s (𝑛 -s 𝑁)))
1917, 18sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → (𝑛 -s 𝑁) ∈ ℕ0s)
2019ex 412 . . . . . . 7 (𝜑 → ((𝑛 ∈ ℤs𝑁 ≤s 𝑛) → (𝑛 -s 𝑁) ∈ ℕ0s))
21 oveq1 7455 . . . . . . . . . . 11 (𝑧 = 0s → (𝑧 +s 𝑁) = ( 0s +s 𝑁))
2221eleq1d 2829 . . . . . . . . . 10 (𝑧 = 0s → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ ( 0s +s 𝑁) ∈ 𝐴))
2322imbi2d 340 . . . . . . . . 9 (𝑧 = 0s → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → ( 0s +s 𝑁) ∈ 𝐴)))
24 oveq1 7455 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧 +s 𝑁) = (𝑦 +s 𝑁))
2524eleq1d 2829 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ (𝑦 +s 𝑁) ∈ 𝐴))
2625imbi2d 340 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → (𝑦 +s 𝑁) ∈ 𝐴)))
27 oveq1 7455 . . . . . . . . . . 11 (𝑧 = (𝑦 +s 1s ) → (𝑧 +s 𝑁) = ((𝑦 +s 1s ) +s 𝑁))
2827eleq1d 2829 . . . . . . . . . 10 (𝑧 = (𝑦 +s 1s ) → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ ((𝑦 +s 1s ) +s 𝑁) ∈ 𝐴))
2928imbi2d 340 . . . . . . . . 9 (𝑧 = (𝑦 +s 1s ) → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → ((𝑦 +s 1s ) +s 𝑁) ∈ 𝐴)))
30 oveq1 7455 . . . . . . . . . . 11 (𝑧 = (𝑛 -s 𝑁) → (𝑧 +s 𝑁) = ((𝑛 -s 𝑁) +s 𝑁))
3130eleq1d 2829 . . . . . . . . . 10 (𝑧 = (𝑛 -s 𝑁) → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴))
3231imbi2d 340 . . . . . . . . 9 (𝑧 = (𝑛 -s 𝑁) → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴)))
33 addslid 28019 . . . . . . . . . . 11 (𝑁 No → ( 0s +s 𝑁) = 𝑁)
346, 33syl 17 . . . . . . . . . 10 (𝜑 → ( 0s +s 𝑁) = 𝑁)
35 peano5uzs.2 . . . . . . . . . 10 (𝜑𝑁𝐴)
3634, 35eqeltrd 2844 . . . . . . . . 9 (𝜑 → ( 0s +s 𝑁) ∈ 𝐴)
37 peano5uzs.3 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝑥 +s 1s ) ∈ 𝐴)
3837ralrimiva 3152 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴)
39 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 +s 𝑁) → (𝑥 +s 1s ) = ((𝑦 +s 𝑁) +s 1s ))
4039eleq1d 2829 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 +s 𝑁) → ((𝑥 +s 1s ) ∈ 𝐴 ↔ ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴))
4140rspccv 3632 . . . . . . . . . . . . . 14 (∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴 → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴))
4238, 41syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴))
4342adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝜑) → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴))
44 n0sno 28346 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0s𝑦 No )
4544adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0s𝜑) → 𝑦 No )
46 1sno 27890 . . . . . . . . . . . . . . 15 1s No
4746a1i 11 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0s𝜑) → 1s No )
486adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0s𝜑) → 𝑁 No )
4945, 47, 48adds32d 28058 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0s𝜑) → ((𝑦 +s 1s ) +s 𝑁) = ((𝑦 +s 𝑁) +s 1s ))
5049eleq1d 2829 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝜑) → (((𝑦 +s 1s ) +s 𝑁) ∈ 𝐴 ↔ ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴))
5143, 50sylibrd 259 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝜑) → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 1s ) +s 𝑁) ∈ 𝐴))
5251ex 412 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → (𝜑 → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 1s ) +s 𝑁) ∈ 𝐴)))
5352a2d 29 . . . . . . . . 9 (𝑦 ∈ ℕ0s → ((𝜑 → (𝑦 +s 𝑁) ∈ 𝐴) → (𝜑 → ((𝑦 +s 1s ) +s 𝑁) ∈ 𝐴)))
5423, 26, 29, 32, 36, 53n0sind 28355 . . . . . . . 8 ((𝑛 -s 𝑁) ∈ ℕ0s → (𝜑 → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴))
5554com12 32 . . . . . . 7 (𝜑 → ((𝑛 -s 𝑁) ∈ ℕ0s → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴))
5620, 55syld 47 . . . . . 6 (𝜑 → ((𝑛 ∈ ℤs𝑁 ≤s 𝑛) → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴))
5756imp 406 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴)
588, 57eqeltrrd 2845 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℤs𝑁 ≤s 𝑛)) → 𝑛𝐴)
5958ex 412 . . 3 (𝜑 → ((𝑛 ∈ ℤs𝑁 ≤s 𝑛) → 𝑛𝐴))
602, 59biimtrid 242 . 2 (𝜑 → (𝑛 ∈ {𝑘 ∈ ℤs𝑁 ≤s 𝑘} → 𝑛𝐴))
6160ssrdv 4014 1 (𝜑 → {𝑘 ∈ ℤs𝑁 ≤s 𝑘} ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   class class class wbr 5166  (class class class)co 7448   No csur 27702   ≤s csle 27807   0s c0s 27885   1s c1s 27886   +s cadds 28010   -s csubs 28070  0scnn0s 28336  sczs 28382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338  df-nns 28339  df-zs 28383
This theorem is referenced by:  uzsind  28409
  Copyright terms: Public domain W3C validator