Step | Hyp | Ref
| Expression |
1 | | breq2 5170 |
. . . 4
⊢ (𝑘 = 𝑛 → (𝑁 ≤s 𝑘 ↔ 𝑁 ≤s 𝑛)) |
2 | 1 | elrab 3708 |
. . 3
⊢ (𝑛 ∈ {𝑘 ∈ ℤs ∣ 𝑁 ≤s 𝑘} ↔ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) |
3 | | zno 28386 |
. . . . . . 7
⊢ (𝑛 ∈ ℤs
→ 𝑛 ∈ No ) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝑛 ∈ ℤs
∧ 𝑁 ≤s 𝑛) → 𝑛 ∈ No
) |
5 | | peano5uzs.1 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℤs) |
6 | 5 | znod 28387 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ No
) |
7 | | npcans 28123 |
. . . . . 6
⊢ ((𝑛 ∈
No ∧ 𝑁 ∈
No ) → ((𝑛 -s 𝑁) +s 𝑁) = 𝑛) |
8 | 4, 6, 7 | syl2anr 596 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → ((𝑛 -s 𝑁) +s 𝑁) = 𝑛) |
9 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → 𝑛 ∈ ℤs) |
10 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → 𝑁 ∈
ℤs) |
11 | 9, 10 | zsubscld 28400 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → (𝑛 -s 𝑁) ∈
ℤs) |
12 | 3 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℤs) → 𝑛 ∈
No ) |
13 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℤs) → 𝑁 ∈
No ) |
14 | 12, 13 | subsge0d 28147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℤs) → (
0s ≤s (𝑛
-s 𝑁) ↔
𝑁 ≤s 𝑛)) |
15 | 14 | biimpar 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℤs) ∧ 𝑁 ≤s 𝑛) → 0s ≤s (𝑛 -s 𝑁)) |
16 | 15 | anasss 466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → 0s ≤s (𝑛 -s 𝑁)) |
17 | 11, 16 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → ((𝑛 -s 𝑁) ∈ ℤs ∧
0s ≤s (𝑛
-s 𝑁))) |
18 | | eln0zs 28404 |
. . . . . . . . 9
⊢ ((𝑛 -s 𝑁) ∈ ℕ0s ↔ ((𝑛 -s 𝑁) ∈ ℤs ∧
0s ≤s (𝑛
-s 𝑁))) |
19 | 17, 18 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → (𝑛 -s 𝑁) ∈
ℕ0s) |
20 | 19 | ex 412 |
. . . . . . 7
⊢ (𝜑 → ((𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛) → (𝑛 -s 𝑁) ∈
ℕ0s)) |
21 | | oveq1 7455 |
. . . . . . . . . . 11
⊢ (𝑧 = 0s → (𝑧 +s 𝑁) = ( 0s +s 𝑁)) |
22 | 21 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑧 = 0s → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ ( 0s +s 𝑁) ∈ 𝐴)) |
23 | 22 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑧 = 0s → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → ( 0s +s 𝑁) ∈ 𝐴))) |
24 | | oveq1 7455 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝑧 +s 𝑁) = (𝑦 +s 𝑁)) |
25 | 24 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ (𝑦 +s 𝑁) ∈ 𝐴)) |
26 | 25 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → (𝑦 +s 𝑁) ∈ 𝐴))) |
27 | | oveq1 7455 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑦 +s 1s ) → (𝑧 +s 𝑁) = ((𝑦 +s 1s ) +s
𝑁)) |
28 | 27 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑦 +s 1s ) → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ ((𝑦 +s 1s ) +s
𝑁) ∈ 𝐴)) |
29 | 28 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑧 = (𝑦 +s 1s ) → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → ((𝑦 +s 1s ) +s
𝑁) ∈ 𝐴))) |
30 | | oveq1 7455 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑛 -s 𝑁) → (𝑧 +s 𝑁) = ((𝑛 -s 𝑁) +s 𝑁)) |
31 | 30 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑛 -s 𝑁) → ((𝑧 +s 𝑁) ∈ 𝐴 ↔ ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴)) |
32 | 31 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑧 = (𝑛 -s 𝑁) → ((𝜑 → (𝑧 +s 𝑁) ∈ 𝐴) ↔ (𝜑 → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴))) |
33 | | addslid 28019 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
No → ( 0s +s 𝑁) = 𝑁) |
34 | 6, 33 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0s
+s 𝑁) = 𝑁) |
35 | | peano5uzs.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ 𝐴) |
36 | 34, 35 | eqeltrd 2844 |
. . . . . . . . 9
⊢ (𝜑 → ( 0s
+s 𝑁) ∈
𝐴) |
37 | | peano5uzs.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 +s 1s ) ∈ 𝐴) |
38 | 37 | ralrimiva 3152 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) |
39 | | oveq1 7455 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 +s 𝑁) → (𝑥 +s 1s ) = ((𝑦 +s 𝑁) +s 1s
)) |
40 | 39 | eleq1d 2829 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 +s 𝑁) → ((𝑥 +s 1s ) ∈ 𝐴 ↔ ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴)) |
41 | 40 | rspccv 3632 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴 → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴)) |
42 | 38, 41 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴)) |
43 | 42 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0s
∧ 𝜑) → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴)) |
44 | | n0sno 28346 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ0s
→ 𝑦 ∈ No ) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0s
∧ 𝜑) → 𝑦 ∈
No ) |
46 | | 1sno 27890 |
. . . . . . . . . . . . . . 15
⊢
1s ∈ No |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0s
∧ 𝜑) → 1s
∈ No ) |
48 | 6 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0s
∧ 𝜑) → 𝑁 ∈
No ) |
49 | 45, 47, 48 | adds32d 28058 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ0s
∧ 𝜑) → ((𝑦 +s 1s )
+s 𝑁) = ((𝑦 +s 𝑁) +s 1s
)) |
50 | 49 | eleq1d 2829 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0s
∧ 𝜑) → (((𝑦 +s 1s )
+s 𝑁) ∈
𝐴 ↔ ((𝑦 +s 𝑁) +s 1s ) ∈ 𝐴)) |
51 | 43, 50 | sylibrd 259 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0s
∧ 𝜑) → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 1s ) +s
𝑁) ∈ 𝐴)) |
52 | 51 | ex 412 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ0s
→ (𝜑 → ((𝑦 +s 𝑁) ∈ 𝐴 → ((𝑦 +s 1s ) +s
𝑁) ∈ 𝐴))) |
53 | 52 | a2d 29 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ0s
→ ((𝜑 → (𝑦 +s 𝑁) ∈ 𝐴) → (𝜑 → ((𝑦 +s 1s ) +s
𝑁) ∈ 𝐴))) |
54 | 23, 26, 29, 32, 36, 53 | n0sind 28355 |
. . . . . . . 8
⊢ ((𝑛 -s 𝑁) ∈ ℕ0s → (𝜑 → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴)) |
55 | 54 | com12 32 |
. . . . . . 7
⊢ (𝜑 → ((𝑛 -s 𝑁) ∈ ℕ0s → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴)) |
56 | 20, 55 | syld 47 |
. . . . . 6
⊢ (𝜑 → ((𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛) → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴)) |
57 | 56 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → ((𝑛 -s 𝑁) +s 𝑁) ∈ 𝐴) |
58 | 8, 57 | eqeltrrd 2845 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛)) → 𝑛 ∈ 𝐴) |
59 | 58 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛) → 𝑛 ∈ 𝐴)) |
60 | 2, 59 | biimtrid 242 |
. 2
⊢ (𝜑 → (𝑛 ∈ {𝑘 ∈ ℤs ∣ 𝑁 ≤s 𝑘} → 𝑛 ∈ 𝐴)) |
61 | 60 | ssrdv 4014 |
1
⊢ (𝜑 → {𝑘 ∈ ℤs ∣ 𝑁 ≤s 𝑘} ⊆ 𝐴) |