ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdred1hash GIF version

Theorem wrdred1hash 10963
Description: The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
Assertion
Ref Expression
wrdred1hash ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))

Proof of Theorem wrdred1hash
StepHypRef Expression
1 lencl 10924 . . 3 (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0)
2 wrdf 10926 . . . 4 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
3 ffn 5407 . . . 4 (𝐹:(0..^(♯‘𝐹))⟶𝑆𝐹 Fn (0..^(♯‘𝐹)))
4 nn0z 9343 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
5 fzossrbm1 10246 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
64, 5syl 14 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
76ad2antrl 490 . . . . . . . 8 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
8 fnssresb 5370 . . . . . . . . 9 (𝐹 Fn (0..^(♯‘𝐹)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) ↔ (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))))
98adantr 276 . . . . . . . 8 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) ↔ (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))))
107, 9mpbird 167 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)))
11 0z 9334 . . . . . . . 8 0 ∈ ℤ
124ad2antrl 490 . . . . . . . . 9 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘𝐹) ∈ ℤ)
13 peano2zm 9361 . . . . . . . . 9 ((♯‘𝐹) ∈ ℤ → ((♯‘𝐹) − 1) ∈ ℤ)
1412, 13syl 14 . . . . . . . 8 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → ((♯‘𝐹) − 1) ∈ ℤ)
15 fzofig 10509 . . . . . . . 8 ((0 ∈ ℤ ∧ ((♯‘𝐹) − 1) ∈ ℤ) → (0..^((♯‘𝐹) − 1)) ∈ Fin)
1611, 14, 15sylancr 414 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (0..^((♯‘𝐹) − 1)) ∈ Fin)
17 fihashfn 10877 . . . . . . 7 (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) ∧ (0..^((♯‘𝐹) − 1)) ∈ Fin) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = (♯‘(0..^((♯‘𝐹) − 1))))
1810, 16, 17syl2anc 411 . . . . . 6 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = (♯‘(0..^((♯‘𝐹) − 1))))
19 1nn0 9262 . . . . . . . . 9 1 ∈ ℕ0
20 nn0sub2 9396 . . . . . . . . 9 ((1 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ ℕ0)
2119, 20mp3an1 1335 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ ℕ0)
22 hashfzo0 10900 . . . . . . . 8 (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1))
2321, 22syl 14 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1))
2423adantl 277 . . . . . 6 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1))
2518, 24eqtrd 2229 . . . . 5 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
2625ex 115 . . . 4 (𝐹 Fn (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)))
272, 3, 263syl 17 . . 3 (𝐹 ∈ Word 𝑆 → (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)))
281, 27mpand 429 . 2 (𝐹 ∈ Word 𝑆 → (1 ≤ (♯‘𝐹) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)))
2928imp 124 1 ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4033  cres 4665   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  Fincfn 6799  0cc0 7877  1c1 7878  cle 8060  cmin 8195  0cn0 9246  cz 9323  ..^cfzo 10214  chash 10852  Word cword 10920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-fzo 10215  df-ihash 10853  df-word 10921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator