ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdlen GIF version

Theorem swrdlen 11105
Description: Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
swrdlen ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))

Proof of Theorem swrdlen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑆 ∈ Word 𝐴)
2 elfzoelz 10269 . . . . . . . . 9 (𝑥 ∈ (0..^(𝐿𝐹)) → 𝑥 ∈ ℤ)
32adantl 277 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑥 ∈ ℤ)
4 elfzelz 10147 . . . . . . . . . 10 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℤ)
543ad2ant2 1022 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ ℤ)
65adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐹 ∈ ℤ)
73, 6zaddcld 9499 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ ℤ)
8 fvexg 5595 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑥 + 𝐹) ∈ ℤ) → (𝑆‘(𝑥 + 𝐹)) ∈ V)
91, 7, 8syl2anc 411 . . . . . 6 (((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑆‘(𝑥 + 𝐹)) ∈ V)
109ralrimiva 2579 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ∀𝑥 ∈ (0..^(𝐿𝐹))(𝑆‘(𝑥 + 𝐹)) ∈ V)
11 eqid 2205 . . . . . 6 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))
1211fnmpt 5402 . . . . 5 (∀𝑥 ∈ (0..^(𝐿𝐹))(𝑆‘(𝑥 + 𝐹)) ∈ V → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿𝐹)))
1310, 12syl 14 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿𝐹)))
14 swrdval2 11104 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
1514fneq1d 5364 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)) ↔ (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿𝐹))))
1613, 15mpbird 167 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)))
17 0z 9383 . . . 4 0 ∈ ℤ
18 elfzelz 10147 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℤ)
19183ad2ant3 1023 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℤ)
2019, 5zsubcld 9500 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿𝐹) ∈ ℤ)
21 fzofig 10577 . . . 4 ((0 ∈ ℤ ∧ (𝐿𝐹) ∈ ℤ) → (0..^(𝐿𝐹)) ∈ Fin)
2217, 20, 21sylancr 414 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿𝐹)) ∈ Fin)
23 fihashfn 10945 . . 3 (((𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)) ∧ (0..^(𝐿𝐹)) ∈ Fin) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (♯‘(0..^(𝐿𝐹))))
2416, 22, 23syl2anc 411 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (♯‘(0..^(𝐿𝐹))))
25 fznn0sub 10179 . . . 4 (𝐹 ∈ (0...𝐿) → (𝐿𝐹) ∈ ℕ0)
26253ad2ant2 1022 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿𝐹) ∈ ℕ0)
27 hashfzo0 10968 . . 3 ((𝐿𝐹) ∈ ℕ0 → (♯‘(0..^(𝐿𝐹))) = (𝐿𝐹))
2826, 27syl 14 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(0..^(𝐿𝐹))) = (𝐿𝐹))
2924, 28eqtrd 2238 1 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  cop 3636  cmpt 4105   Fn wfn 5266  cfv 5271  (class class class)co 5944  Fincfn 6827  0cc0 7925   + caddc 7928  cmin 8243  0cn0 9295  cz 9372  ...cfz 10130  ..^cfzo 10264  chash 10920  Word cword 10994   substr csubstr 11098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-ihash 10921  df-word 10995  df-substr 11099
This theorem is referenced by:  swrdf  11108  swrdrlen  11114  swrdlen2  11115  swrds1  11121  ccatswrd  11123  swrdccat2  11124
  Copyright terms: Public domain W3C validator