![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resinval | GIF version |
Description: The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
Ref | Expression |
---|---|
resinval | ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7897 | . . . . . . . 8 ⊢ i ∈ ℂ | |
2 | recn 7935 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | cjmul 10878 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) | |
4 | 1, 2, 3 | sylancr 414 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) |
5 | cji 10895 | . . . . . . . . 9 ⊢ (∗‘i) = -i | |
6 | 5 | oveq1i 5879 | . . . . . . . 8 ⊢ ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴)) |
7 | cjre 10875 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
8 | 7 | oveq2d 5885 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (-i · (∗‘𝐴)) = (-i · 𝐴)) |
9 | 6, 8 | eqtrid 2222 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((∗‘i) · (∗‘𝐴)) = (-i · 𝐴)) |
10 | 4, 9 | eqtrd 2210 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = (-i · 𝐴)) |
11 | 10 | fveq2d 5515 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (exp‘(-i · 𝐴))) |
12 | mulcl 7929 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
13 | 1, 2, 12 | sylancr 414 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
14 | efcj 11665 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) |
16 | 11, 15 | eqtr3d 2212 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(-i · 𝐴)) = (∗‘(exp‘(i · 𝐴)))) |
17 | 16 | oveq2d 5885 | . . 3 ⊢ (𝐴 ∈ ℝ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴))))) |
18 | 17 | oveq1d 5884 | . 2 ⊢ (𝐴 ∈ ℝ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i))) |
19 | sinval 11694 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
20 | 2, 19 | syl 14 | . 2 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
21 | efcl 11656 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
22 | imval2 10887 | . . 3 ⊢ ((exp‘(i · 𝐴)) ∈ ℂ → (ℑ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i))) | |
23 | 13, 21, 22 | 3syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i))) |
24 | 18, 20, 23 | 3eqtr4d 2220 | 1 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 ℝcr 7801 ici 7804 · cmul 7807 − cmin 8118 -cneg 8119 / cdiv 8618 2c2 8959 ∗ccj 10832 ℑcim 10834 expce 11634 sincsin 11636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-isom 5221 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-irdg 6365 df-frec 6386 df-1o 6411 df-oadd 6415 df-er 6529 df-en 6735 df-dom 6736 df-fin 6737 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-ico 9881 df-fz 9996 df-fzo 10129 df-seqfrec 10432 df-exp 10506 df-fac 10690 df-ihash 10740 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-clim 11271 df-sumdc 11346 df-ef 11640 df-sin 11642 |
This theorem is referenced by: resin4p 11710 resincl 11712 |
Copyright terms: Public domain | W3C validator |