| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsgrpd | GIF version | ||
| Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdsgrpd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdsgrpd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsgrpd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsgrpd.r | ⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
| Ref | Expression |
|---|---|
| prdsgrpd | ⊢ (𝜑 → 𝑌 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2210 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
| 2 | eqidd 2210 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
| 3 | prdsgrpd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 4 | prdsgrpd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdsgrpd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 6 | prdsgrpd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Grp) | |
| 7 | grpmnd 13506 | . . . . 5 ⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) | |
| 8 | 7 | ssriv 3208 | . . . 4 ⊢ Grp ⊆ Mnd |
| 9 | fss 5461 | . . . 4 ⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
| 10 | 6, 8, 9 | sylancl 413 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 11 | 3, 4, 5, 10 | prds0g 13448 | . 2 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑌)) |
| 12 | 3, 4, 5, 10 | prdsmndd 13447 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
| 13 | eqid 2209 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 14 | eqid 2209 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
| 15 | 5 | elexd 2793 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
| 16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
| 17 | 4 | elexd 2793 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
| 19 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp) |
| 20 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
| 21 | eqid 2209 | . . . 4 ⊢ (0g ∘ 𝑅) = (0g ∘ 𝑅) | |
| 22 | eqid 2209 | . . . 4 ⊢ (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) = (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) | |
| 23 | 3, 13, 14, 16, 18, 19, 20, 21, 22 | prdsinvlem 13607 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) ∈ (Base‘𝑌) ∧ ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)))(+g‘𝑌)𝑎) = (0g ∘ 𝑅))) |
| 24 | 23 | simpld 112 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) ∈ (Base‘𝑌)) |
| 25 | 23 | simprd 114 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)))(+g‘𝑌)𝑎) = (0g ∘ 𝑅)) |
| 26 | 1, 2, 11, 12, 24, 25 | isgrpd2 13520 | 1 ⊢ (𝜑 → 𝑌 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 ↦ cmpt 4124 ∘ ccom 4700 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 Xscprds 13264 Mndcmnd 13415 Grpcgrp 13499 invgcminusg 13500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 df-rest 13240 df-topn 13241 df-0g 13257 df-topgen 13259 df-pt 13260 df-prds 13266 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 |
| This theorem is referenced by: prdsinvgd 13609 pwsgrp 13610 |
| Copyright terms: Public domain | W3C validator |