| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsinvgd | GIF version | ||
| Description: Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdsgrpd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdsgrpd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsgrpd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsgrpd.r | ⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
| prdsinvgd.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsinvgd.n | ⊢ 𝑁 = (invg‘𝑌) |
| prdsinvgd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prdsinvgd | ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsgrpd.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 2 | prdsinvgd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | eqid 2196 | . . . . 5 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
| 4 | prdsgrpd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 5 | 4 | elexd 2776 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
| 6 | prdsgrpd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 7 | 6 | elexd 2776 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 8 | prdsgrpd.r | . . . . 5 ⊢ (𝜑 → 𝑅:𝐼⟶Grp) | |
| 9 | prdsinvgd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | eqid 2196 | . . . . 5 ⊢ (0g ∘ 𝑅) = (0g ∘ 𝑅) | |
| 11 | eqid 2196 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) | |
| 12 | 1, 2, 3, 5, 7, 8, 9, 10, 11 | prdsinvlem 13310 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ∈ 𝐵 ∧ ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g ∘ 𝑅))) |
| 13 | 12 | simprd 114 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g ∘ 𝑅)) |
| 14 | grpmnd 13209 | . . . . . 6 ⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) | |
| 15 | 14 | ssriv 3188 | . . . . 5 ⊢ Grp ⊆ Mnd |
| 16 | fss 5422 | . . . . 5 ⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
| 17 | 8, 15, 16 | sylancl 413 | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 18 | 1, 6, 4, 17 | prds0g 13151 | . . 3 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑌)) |
| 19 | 13, 18 | eqtrd 2229 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g‘𝑌)) |
| 20 | 1, 6, 4, 8 | prdsgrpd 13311 | . . 3 ⊢ (𝜑 → 𝑌 ∈ Grp) |
| 21 | 12 | simpld 112 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ∈ 𝐵) |
| 22 | eqid 2196 | . . . 4 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
| 23 | prdsinvgd.n | . . . 4 ⊢ 𝑁 = (invg‘𝑌) | |
| 24 | 2, 3, 22, 23 | grpinvid2 13255 | . . 3 ⊢ ((𝑌 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ∈ 𝐵) → ((𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ↔ ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g‘𝑌))) |
| 25 | 20, 9, 21, 24 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ↔ ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g‘𝑌))) |
| 26 | 19, 25 | mpbird 167 | 1 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ↦ cmpt 4095 ∘ ccom 4668 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 0gc0g 12958 Xscprds 12967 Mndcmnd 13118 Grpcgrp 13202 invgcminusg 13203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-tset 12799 df-ple 12800 df-ds 12802 df-hom 12804 df-cco 12805 df-rest 12943 df-topn 12944 df-0g 12960 df-topgen 12962 df-pt 12963 df-prds 12969 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 |
| This theorem is referenced by: pwsinvg 13314 |
| Copyright terms: Public domain | W3C validator |