| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s2fv0g | GIF version | ||
| Description: Extract the first symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2fv0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴𝐵”〉‘0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 11249 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 2 | s1cl 11115 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 ∈ Word 𝑉) | |
| 3 | wrdv 11049 | . . . 4 ⊢ (〈“𝐴”〉 ∈ Word 𝑉 → 〈“𝐴”〉 ∈ Word V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 ∈ Word V) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈“𝐴”〉 ∈ Word V) |
| 6 | s1leng 11118 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (♯‘〈“𝐴”〉) = 1) | |
| 7 | 6 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (♯‘〈“𝐴”〉) = 1) |
| 8 | simpl 109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 9 | simpr 110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 10 | s1fv 11120 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴”〉‘0) = 𝐴) | |
| 11 | 10 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴”〉‘0) = 𝐴) |
| 12 | 0nn0 9347 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 13 | 12 | a1i 9 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 0 ∈ ℕ0) |
| 14 | 0lt1 8236 | . . 3 ⊢ 0 < 1 | |
| 15 | 14 | a1i 9 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 0 < 1) |
| 16 | 1, 5, 7, 8, 9, 11, 13, 15 | cats1fvd 11259 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴𝐵”〉‘0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2777 class class class wbr 4060 ‘cfv 5291 0cc0 7962 1c1 7963 < clt 8144 ℕ0cn0 9332 ♯chash 10959 Word cword 11033 〈“cs1 11109 〈“cs2 11242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4176 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-iinf 4655 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-addass 8064 ax-distr 8066 ax-i2m1 8067 ax-0lt1 8068 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 ax-pre-ltirr 8074 ax-pre-ltwlin 8075 ax-pre-lttrn 8076 ax-pre-apti 8077 ax-pre-ltadd 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-iun 3944 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-ilim 4435 df-suc 4437 df-iom 4658 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-recs 6416 df-frec 6502 df-1o 6527 df-er 6645 df-en 6853 df-dom 6854 df-fin 6855 df-pnf 8146 df-mnf 8147 df-xr 8148 df-ltxr 8149 df-le 8150 df-sub 8282 df-neg 8283 df-inn 9074 df-n0 9333 df-z 9410 df-uz 9686 df-fz 10168 df-fzo 10302 df-ihash 10960 df-word 11034 df-concat 11087 df-s1 11110 df-s2 11249 |
| This theorem is referenced by: s3fv0g 11284 |
| Copyright terms: Public domain | W3C validator |