| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cats1fvd | GIF version | ||
| Description: A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.) |
| Ref | Expression |
|---|---|
| cats1cld.1 | ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) |
| cats1fvd.s | ⊢ (𝜑 → 𝑆 ∈ Word V) |
| cats1fvd.3 | ⊢ (𝜑 → (♯‘𝑆) = 𝑀) |
| cats1fvd.yex | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| cats1fvd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| cats1fvd.y | ⊢ (𝜑 → (𝑆‘𝑁) = 𝑌) |
| cats1fvd.5 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| cats1fvd.6 | ⊢ (𝜑 → 𝑁 < 𝑀) |
| Ref | Expression |
|---|---|
| cats1fvd | ⊢ (𝜑 → (𝑇‘𝑁) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats1cld.1 | . . . 4 ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) | |
| 2 | 1 | fveq1i 5601 | . . 3 ⊢ (𝑇‘𝑁) = ((𝑆 ++ 〈“𝑋”〉)‘𝑁) |
| 3 | cats1fvd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Word V) | |
| 4 | cats1fvd.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 5 | 4 | elexd 2791 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
| 6 | 5 | s1cld 11116 | . . . 4 ⊢ (𝜑 → 〈“𝑋”〉 ∈ Word V) |
| 7 | cats1fvd.5 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 8 | nn0uz 9720 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 7, 8 | eleqtrdi 2300 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
| 10 | lencl 11037 | . . . . . 6 ⊢ (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0) | |
| 11 | nn0z 9429 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℤ) | |
| 12 | 3, 10, 11 | 3syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝑆) ∈ ℤ) |
| 13 | cats1fvd.6 | . . . . . 6 ⊢ (𝜑 → 𝑁 < 𝑀) | |
| 14 | cats1fvd.3 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑆) = 𝑀) | |
| 15 | 13, 14 | breqtrrd 4088 | . . . . 5 ⊢ (𝜑 → 𝑁 < (♯‘𝑆)) |
| 16 | elfzo2 10309 | . . . . 5 ⊢ (𝑁 ∈ (0..^(♯‘𝑆)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (♯‘𝑆) ∈ ℤ ∧ 𝑁 < (♯‘𝑆))) | |
| 17 | 9, 12, 15, 16 | syl3anbrc 1184 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑆))) |
| 18 | ccatval1 11093 | . . . 4 ⊢ ((𝑆 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V ∧ 𝑁 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 〈“𝑋”〉)‘𝑁) = (𝑆‘𝑁)) | |
| 19 | 3, 6, 17, 18 | syl3anc 1250 | . . 3 ⊢ (𝜑 → ((𝑆 ++ 〈“𝑋”〉)‘𝑁) = (𝑆‘𝑁)) |
| 20 | 2, 19 | eqtrid 2252 | . 2 ⊢ (𝜑 → (𝑇‘𝑁) = (𝑆‘𝑁)) |
| 21 | cats1fvd.y | . 2 ⊢ (𝜑 → (𝑆‘𝑁) = 𝑌) | |
| 22 | 20, 21 | eqtrd 2240 | 1 ⊢ (𝜑 → (𝑇‘𝑁) = 𝑌) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2777 class class class wbr 4060 ‘cfv 5291 (class class class)co 5969 0cc0 7962 < clt 8144 ℕ0cn0 9332 ℤcz 9409 ℤ≥cuz 9685 ..^cfzo 10301 ♯chash 10959 Word cword 11033 ++ cconcat 11086 〈“cs1 11109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4176 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-iinf 4655 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-addass 8064 ax-distr 8066 ax-i2m1 8067 ax-0lt1 8068 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 ax-pre-ltirr 8074 ax-pre-ltwlin 8075 ax-pre-lttrn 8076 ax-pre-apti 8077 ax-pre-ltadd 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-iun 3944 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-ilim 4435 df-suc 4437 df-iom 4658 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-recs 6416 df-frec 6502 df-1o 6527 df-er 6645 df-en 6853 df-dom 6854 df-fin 6855 df-pnf 8146 df-mnf 8147 df-xr 8148 df-ltxr 8149 df-le 8150 df-sub 8282 df-neg 8283 df-inn 9074 df-n0 9333 df-z 9410 df-uz 9686 df-fz 10168 df-fzo 10302 df-ihash 10960 df-word 11034 df-concat 11087 df-s1 11110 |
| This theorem is referenced by: s2fv0g 11280 s3fv0g 11284 s3fv1g 11285 |
| Copyright terms: Public domain | W3C validator |