![]() |
Intuitionistic Logic Explorer Theorem List (p. 107 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | seqhomog 10601* | Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) | ||
Theorem | seqfeq4g 10602* | Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝑄 ∈ 𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)) | ||
Theorem | seq3distr 10603* | The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | ser0 10604 | The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0) | ||
Theorem | ser0f 10605 | A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) | ||
Theorem | fser0const 10606* | Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) | ||
Theorem | ser3ge0 10607* | A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | ser3le 10608* | Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | ||
Syntax | cexp 10609 | Extend class notation to include exponentiation of a complex number to an integer power. |
class ↑ | ||
Definition | df-exp 10610* |
Define exponentiation to nonnegative integer powers. For example,
(5↑2) = 25 (see ex-exp 15219).
This definition is not meant to be used directly; instead, exp0 10614 and expp1 10617 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts. 10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (see 0exp0e1 10615). 4-Jun-2014: The definition was extended to include negative integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 15219). The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.) |
⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | ||
Theorem | exp3vallem 10611 | Lemma for exp3val 10612. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0) | ||
Theorem | exp3val 10612 | Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) | ||
Theorem | expnnval 10613 | Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | ||
Theorem | exp0 10614 | Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 10615) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | ||
Theorem | 0exp0e1 10615 | The zeroth power of zero equals one. See comment of exp0 10614. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (0↑0) = 1 | ||
Theorem | exp1 10616 | Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | ||
Theorem | expp1 10617 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expnegap0 10618 | Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expineg2 10619 | Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | ||
Theorem | expn1ap0 10620 | A number to the negative one power is the reciprocal. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴↑-1) = (1 / 𝐴)) | ||
Theorem | expcllem 10621* | Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | expcl2lemap 10622* | Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 # 0) → (1 / 𝑥) ∈ 𝐹) ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | nnexpcl 10623 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | ||
Theorem | nn0expcl 10624 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ0) | ||
Theorem | zexpcl 10625 | Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | ||
Theorem | qexpcl 10626 | Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | reexpcl 10627 | Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | expcl 10628 | Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | rpexpcl 10629 | Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | ||
Theorem | reexpclzap 10630 | Closure of exponentiation of reals. (Contributed by Jim Kingdon, 9-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | qexpclz 10631 | Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | m1expcl2 10632 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | ||
Theorem | m1expcl 10633 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℤ) | ||
Theorem | expclzaplem 10634* | Closure law for integer exponentiation. Lemma for expclzap 10635 and expap0i 10642. (Contributed by Jim Kingdon, 9-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) | ||
Theorem | expclzap 10635 | Closure law for integer exponentiation. (Contributed by Jim Kingdon, 9-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | nn0expcli 10636 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝐴↑𝑁) ∈ ℕ0 | ||
Theorem | nn0sqcl 10637 | The square of a nonnegative integer is a nonnegative integer. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0) | ||
Theorem | expm1t 10638 | Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) | ||
Theorem | 1exp 10639 | Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | ||
Theorem | expap0 10640 | Positive integer exponentiation is apart from zero iff its base is apart from zero. That it is easier to prove this first, and then prove expeq0 10641 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." (Remark of [Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) # 0 ↔ 𝐴 # 0)) | ||
Theorem | expeq0 10641 | Positive integer exponentiation is 0 iff its base is 0. (Contributed by NM, 23-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) | ||
Theorem | expap0i 10642 | Integer exponentiation is apart from zero if its base is apart from zero. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) | ||
Theorem | expgt0 10643 | A positive real raised to an integer power is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑𝑁)) | ||
Theorem | expnegzap 10644 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | 0exp 10645 | Value of zero raised to a positive integer power. (Contributed by NM, 19-Aug-2004.) |
⊢ (𝑁 ∈ ℕ → (0↑𝑁) = 0) | ||
Theorem | expge0 10646 | A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) | ||
Theorem | expge1 10647 | A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑𝑁)) | ||
Theorem | expgt1 10648 | A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴↑𝑁)) | ||
Theorem | mulexp 10649 | Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | mulexpzap 10650 | Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | exprecap 10651 | Integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expadd 10652 | Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expaddzaplem 10653 | Lemma for expaddzap 10654. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expaddzap 10654 | Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expmul 10655 | Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | expmulzap 10656 | Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | m1expeven 10657 | Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.) |
⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) | ||
Theorem | expsubap 10658 | Exponent subtraction law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) | ||
Theorem | expp1zap 10659 | Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expm1ap 10660 | Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) | ||
Theorem | expdivap 10661 | Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) | ||
Theorem | ltexp2a 10662 | Ordering relationship for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) < (𝐴↑𝑁)) | ||
Theorem | leexp2a 10663 | Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | ||
Theorem | leexp2r 10664 | Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | ||
Theorem | leexp1a 10665 | Weak base ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) | ||
Theorem | exple1 10666 | A real between 0 and 1 inclusive raised to a nonnegative integer is less than or equal to 1. (Contributed by Paul Chapman, 29-Dec-2007.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ≤ 1) | ||
Theorem | expubnd 10667 | An upper bound on 𝐴↑𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴↑𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁))) | ||
Theorem | sqval 10668 | Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | ||
Theorem | sqneg 10669 | The square of the negative of a number.) (Contributed by NM, 15-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | ||
Theorem | sqsubswap 10670 | Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = ((𝐵 − 𝐴)↑2)) | ||
Theorem | sqcl 10671 | Closure of square. (Contributed by NM, 10-Aug-1999.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | ||
Theorem | sqmul 10672 | Distribution of square over multiplication. (Contributed by NM, 21-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | ||
Theorem | sqeq0 10673 | A number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) | ||
Theorem | sqdivap 10674 | Distribution of square over division. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | sqdividap 10675 | The square of a complex number apart from zero divided by itself equals that number. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((𝐴↑2) / 𝐴) = 𝐴) | ||
Theorem | sqne0 10676 | A number is nonzero iff its square is nonzero. See also sqap0 10677 which is the same but with not equal changed to apart. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0)) | ||
Theorem | sqap0 10677 | A number is apart from zero iff its square is apart from zero. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) # 0 ↔ 𝐴 # 0)) | ||
Theorem | resqcl 10678 | Closure of the square of a real number. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | ||
Theorem | sqgt0ap 10679 | The square of a nonzero real is positive. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴↑2)) | ||
Theorem | nnsqcl 10680 | The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ) | ||
Theorem | zsqcl 10681 | Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | ||
Theorem | qsqcl 10682 | The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | ||
Theorem | sq11 10683 | The square function is one-to-one for nonnegative reals. Also see sq11ap 10778 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
Theorem | lt2sq 10684 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 24-Feb-2006.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sq 10685 | The square function on nonnegative reals is monotonic. (Contributed by NM, 18-Oct-1999.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | le2sq2 10686 | The square of a 'less than or equal to' ordering. (Contributed by NM, 21-Mar-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵↑2)) | ||
Theorem | sqge0 10687 | A square of a real is nonnegative. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | ||
Theorem | zsqcl2 10688 | The square of an integer is a nonnegative integer. (Contributed by Mario Carneiro, 18-Apr-2014.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0) | ||
Theorem | sumsqeq0 10689 | Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)) | ||
Theorem | sqvali 10690 | Value of square. Inference version. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴↑2) = (𝐴 · 𝐴) | ||
Theorem | sqcli 10691 | Closure of square. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴↑2) ∈ ℂ | ||
Theorem | sqeq0i 10692 | A number is zero iff its square is zero. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((𝐴↑2) = 0 ↔ 𝐴 = 0) | ||
Theorem | sqmuli 10693 | Distribution of square over multiplication. (Contributed by NM, 3-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)) | ||
Theorem | sqdivapi 10694 | Distribution of square over division. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0 ⇒ ⊢ ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)) | ||
Theorem | resqcli 10695 | Closure of square in reals. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴↑2) ∈ ℝ | ||
Theorem | sqgt0api 10696 | The square of a nonzero real is positive. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 # 0 → 0 < (𝐴↑2)) | ||
Theorem | sqge0i 10697 | A square of a real is nonnegative. (Contributed by NM, 3-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 0 ≤ (𝐴↑2) | ||
Theorem | lt2sqi 10698 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 12-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sqi 10699 | The square function on nonnegative reals is monotonic. (Contributed by NM, 12-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | sq11i 10700 | The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |