ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf1og GIF version

Theorem seqf1og 10582
Description: Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.)
Hypotheses
Ref Expression
seqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqf1o.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqf1o.5 (𝜑𝐶𝑆)
seqf1og.p (𝜑+𝑉)
seqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
seqf1o.7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝐶)
seqf1o.8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
seqf1og.g (𝜑𝐺𝑊)
seqf1og.h (𝜑𝐻𝑋)
Assertion
Ref Expression
seqf1og (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐹   𝑘,𝐺,𝑥,𝑦,𝑧   𝑘,𝑀,𝑥,𝑦,𝑧   + ,𝑘,𝑥,𝑦,𝑧   𝑘,𝑁,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝐶,𝑘,𝑥,𝑦,𝑧   𝑘,𝐻
Allowed substitution hints:   𝐻(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑘)

Proof of Theorem seqf1og
Dummy variables 𝑓 𝑔 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.6 . . 3 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
2 seqf1o.7 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝐶)
32fmpttd 5705 . . 3 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶)
4 seqf1o.4 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
5 oveq2 5918 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀))
6 f1oeq23 5483 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...𝑀) ∧ (𝑀...𝑥) = (𝑀...𝑀)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)))
75, 5, 6syl2anc 411 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)))
85feq2d 5383 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...𝑀)⟶𝐶))
97, 8anbi12d 473 . . . . . . . . 9 (𝑥 = 𝑀 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)))
10 fveq2 5546 . . . . . . . . . 10 (𝑥 = 𝑀 → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘𝑀))
11 fveq2 5546 . . . . . . . . . 10 (𝑥 = 𝑀 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑀))
1210, 11eqeq12d 2208 . . . . . . . . 9 (𝑥 = 𝑀 → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))
139, 12imbi12d 234 . . . . . . . 8 (𝑥 = 𝑀 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))
14132albidv 1878 . . . . . . 7 (𝑥 = 𝑀 → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))
1514imbi2d 230 . . . . . 6 (𝑥 = 𝑀 → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))))
16 oveq2 5918 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘))
17 f1oeq23 5483 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...𝑘) ∧ (𝑀...𝑥) = (𝑀...𝑘)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘)))
1816, 16, 17syl2anc 411 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘)))
1916feq2d 5383 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...𝑘)⟶𝐶))
2018, 19anbi12d 473 . . . . . . . . 9 (𝑥 = 𝑘 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶)))
21 fveq2 5546 . . . . . . . . . 10 (𝑥 = 𝑘 → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘𝑘))
22 fveq2 5546 . . . . . . . . . 10 (𝑥 = 𝑘 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑘))
2321, 22eqeq12d 2208 . . . . . . . . 9 (𝑥 = 𝑘 → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))
2420, 23imbi12d 234 . . . . . . . 8 (𝑥 = 𝑘 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))))
25242albidv 1878 . . . . . . 7 (𝑥 = 𝑘 → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))))
2625imbi2d 230 . . . . . 6 (𝑥 = 𝑘 → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))))
27 oveq2 5918 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝑀...𝑥) = (𝑀...(𝑘 + 1)))
28 f1oeq23 5483 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...(𝑘 + 1)) ∧ (𝑀...𝑥) = (𝑀...(𝑘 + 1))) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1))))
2927, 27, 28syl2anc 411 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1))))
3027feq2d 5383 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...(𝑘 + 1))⟶𝐶))
3129, 30anbi12d 473 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)))
32 fveq2 5546 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)))
33 fveq2 5546 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))
3432, 33eqeq12d 2208 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))
3531, 34imbi12d 234 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
36352albidv 1878 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
3736imbi2d 230 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))))
38 oveq2 5918 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁))
39 f1oeq23 5483 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...𝑁) ∧ (𝑀...𝑥) = (𝑀...𝑁)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
4038, 38, 39syl2anc 411 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
4138feq2d 5383 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...𝑁)⟶𝐶))
4240, 41anbi12d 473 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶)))
43 fveq2 5546 . . . . . . . . . 10 (𝑥 = 𝑁 → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘𝑁))
44 fveq2 5546 . . . . . . . . . 10 (𝑥 = 𝑁 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑁))
4543, 44eqeq12d 2208 . . . . . . . . 9 (𝑥 = 𝑁 → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
4642, 45imbi12d 234 . . . . . . . 8 (𝑥 = 𝑁 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))
47462albidv 1878 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))
4847imbi2d 230 . . . . . 6 (𝑥 = 𝑁 → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))))
49 f1of 5492 . . . . . . . . . . . . . 14 (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀))
5049adantr 276 . . . . . . . . . . . . 13 ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀))
51 elfz3 10090 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
52 fvco3 5620 . . . . . . . . . . . . 13 ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → ((𝑔𝑓)‘𝑀) = (𝑔‘(𝑓𝑀)))
5350, 51, 52syl2anr 290 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔𝑓)‘𝑀) = (𝑔‘(𝑓𝑀)))
5453adantll 476 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔𝑓)‘𝑀) = (𝑔‘(𝑓𝑀)))
55 ffvelcdm 5683 . . . . . . . . . . . . . . . 16 ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → (𝑓𝑀) ∈ (𝑀...𝑀))
5649, 51, 55syl2anr 290 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓𝑀) ∈ (𝑀...𝑀))
57 fzsn 10122 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
5857eleq2d 2263 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → ((𝑓𝑀) ∈ (𝑀...𝑀) ↔ (𝑓𝑀) ∈ {𝑀}))
59 elsni 3636 . . . . . . . . . . . . . . . . 17 ((𝑓𝑀) ∈ {𝑀} → (𝑓𝑀) = 𝑀)
6058, 59biimtrdi 163 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → ((𝑓𝑀) ∈ (𝑀...𝑀) → (𝑓𝑀) = 𝑀))
6160imp 124 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ (𝑓𝑀) ∈ (𝑀...𝑀)) → (𝑓𝑀) = 𝑀)
6256, 61syldan 282 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓𝑀) = 𝑀)
6362adantrr 479 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑓𝑀) = 𝑀)
6463fveq2d 5550 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑔‘(𝑓𝑀)) = (𝑔𝑀))
6564adantll 476 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑔‘(𝑓𝑀)) = (𝑔𝑀))
6654, 65eqtrd 2226 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔𝑓)‘𝑀) = (𝑔𝑀))
67 simplr 528 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → 𝑀 ∈ ℤ)
68 vex 2763 . . . . . . . . . . . . 13 𝑔 ∈ V
69 vex 2763 . . . . . . . . . . . . 13 𝑓 ∈ V
7068, 69coex 5203 . . . . . . . . . . . 12 (𝑔𝑓) ∈ V
7170a1i 9 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑔𝑓) ∈ V)
72 seqf1og.p . . . . . . . . . . . 12 (𝜑+𝑉)
7372ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → +𝑉)
74 seq1g 10524 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑔𝑓) ∈ V ∧ +𝑉) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = ((𝑔𝑓)‘𝑀))
7567, 71, 73, 74syl3anc 1249 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = ((𝑔𝑓)‘𝑀))
7668a1i 9 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → 𝑔 ∈ V)
77 seq1g 10524 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑔 ∈ V ∧ +𝑉) → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔𝑀))
7867, 76, 73, 77syl3anc 1249 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔𝑀))
7966, 75, 783eqtr4d 2236 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))
8079ex 115 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))
8180alrimivv 1886 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))
8281expcom 116 . . . . . 6 (𝑀 ∈ ℤ → (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))
83 f1oeq1 5480 . . . . . . . . . . . 12 (𝑓 = 𝑡 → (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ↔ 𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘)))
84 feq1 5378 . . . . . . . . . . . 12 (𝑔 = 𝑠 → (𝑔:(𝑀...𝑘)⟶𝐶𝑠:(𝑀...𝑘)⟶𝐶))
8583, 84bi2anan9r 607 . . . . . . . . . . 11 ((𝑔 = 𝑠𝑓 = 𝑡) → ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) ↔ (𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶)))
86 coeq1 4813 . . . . . . . . . . . . . . 15 (𝑔 = 𝑠 → (𝑔𝑓) = (𝑠𝑓))
87 coeq2 4814 . . . . . . . . . . . . . . 15 (𝑓 = 𝑡 → (𝑠𝑓) = (𝑠𝑡))
8886, 87sylan9eq 2246 . . . . . . . . . . . . . 14 ((𝑔 = 𝑠𝑓 = 𝑡) → (𝑔𝑓) = (𝑠𝑡))
8988seqeq3d 10516 . . . . . . . . . . . . 13 ((𝑔 = 𝑠𝑓 = 𝑡) → seq𝑀( + , (𝑔𝑓)) = seq𝑀( + , (𝑠𝑡)))
9089fveq1d 5548 . . . . . . . . . . . 12 ((𝑔 = 𝑠𝑓 = 𝑡) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , (𝑠𝑡))‘𝑘))
91 simpl 109 . . . . . . . . . . . . . 14 ((𝑔 = 𝑠𝑓 = 𝑡) → 𝑔 = 𝑠)
9291seqeq3d 10516 . . . . . . . . . . . . 13 ((𝑔 = 𝑠𝑓 = 𝑡) → seq𝑀( + , 𝑔) = seq𝑀( + , 𝑠))
9392fveq1d 5548 . . . . . . . . . . . 12 ((𝑔 = 𝑠𝑓 = 𝑡) → (seq𝑀( + , 𝑔)‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))
9490, 93eqeq12d 2208 . . . . . . . . . . 11 ((𝑔 = 𝑠𝑓 = 𝑡) → ((seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘) ↔ (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))
9585, 94imbi12d 234 . . . . . . . . . 10 ((𝑔 = 𝑠𝑓 = 𝑡) → (((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))))
9695cbval2vw 1944 . . . . . . . . 9 (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))
97 simplll 533 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝜑)
98 seqf1o.1 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9997, 98sylan 283 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
100 seqf1o.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
10197, 100sylan 283 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
102 seqf1o.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
10397, 102sylan 283 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
104 simpllr 534 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑘 ∈ (ℤ𝑀))
105 seqf1o.5 . . . . . . . . . . . . . . 15 (𝜑𝐶𝑆)
10697, 105syl 14 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝐶𝑆)
10797, 72syl 14 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → +𝑉)
108 simprl 529 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))
109 simprr 531 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)
110 eqid 2193 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) = (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1))))
111 eqid 2193 . . . . . . . . . . . . . 14 (𝑓‘(𝑘 + 1)) = (𝑓‘(𝑘 + 1))
112 simplr 528 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))
113112, 96sylib 122 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))
11499, 101, 103, 104, 106, 107, 108, 109, 110, 111, 113seqf1oglem2 10581 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))
115114exp31 364 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
11696, 115biimtrrid 153 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
117116alrimdv 1887 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
118117alrimdv 1887 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
11996, 118biimtrid 152 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
120119expcom 116 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))))
121120a2d 26 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) → (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))))
12215, 26, 37, 48, 82, 121uzind4 9643 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))
1234, 122mpcom 36 . . . 4 (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
1242ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐺𝑥) ∈ 𝐶)
125 eqid 2193 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))
126125fnmpt 5372 . . . . . . 7 (∀𝑥 ∈ (𝑀...𝑁)(𝐺𝑥) ∈ 𝐶 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) Fn (𝑀...𝑁))
127124, 126syl 14 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) Fn (𝑀...𝑁))
128 eluzel2 9587 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1294, 128syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
130 eluzelz 9591 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1314, 130syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
132129, 131fzfigd 10492 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
133 fnfi 6985 . . . . . 6 (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ Fin)
134127, 132, 133syl2anc 411 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ Fin)
135 f1of 5492 . . . . . . 7 (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
1361, 135syl 14 . . . . . 6 (𝜑𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
137136, 132fexd 5780 . . . . 5 (𝜑𝐹 ∈ V)
138 f1oeq1 5480 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
139 feq1 5378 . . . . . . . 8 (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶))
140138, 139bi2anan9r 607 . . . . . . 7 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶)))
141 coeq1 4813 . . . . . . . . . . 11 (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) → (𝑔𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝑓))
142 coeq2 4814 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))
143141, 142sylan9eq 2246 . . . . . . . . . 10 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (𝑔𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))
144143seqeq3d 10516 . . . . . . . . 9 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , (𝑔𝑓)) = seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)))
145144fveq1d 5548 . . . . . . . 8 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁))
146 simpl 109 . . . . . . . . . 10 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → 𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))
147146seqeq3d 10516 . . . . . . . . 9 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))))
148147fveq1d 5548 . . . . . . . 8 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))
149145, 148eqeq12d 2208 . . . . . . 7 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → ((seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁)))
150140, 149imbi12d 234 . . . . . 6 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))))
151150spc2gv 2851 . . . . 5 (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ Fin ∧ 𝐹 ∈ V) → (∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))))
152134, 137, 151syl2anc 411 . . . 4 (𝜑 → (∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))))
153123, 152mpd 13 . . 3 (𝜑 → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁)))
1541, 3, 153mp2and 433 . 2 (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))
155 fveq2 5546 . . . . 5 (𝑥 = (𝐹𝑘) → (𝐺𝑥) = (𝐺‘(𝐹𝑘)))
156136ffvelcdmda 5685 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ (𝑀...𝑁))
157155eleq1d 2262 . . . . . 6 (𝑥 = (𝐹𝑘) → ((𝐺𝑥) ∈ 𝐶 ↔ (𝐺‘(𝐹𝑘)) ∈ 𝐶))
158124adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (𝑀...𝑁)(𝐺𝑥) ∈ 𝐶)
159157, 158, 156rspcdva 2869 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝐹𝑘)) ∈ 𝐶)
160125, 155, 156, 159fvmptd3 5643 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘(𝐹𝑘)) = (𝐺‘(𝐹𝑘)))
161 fvco3 5620 . . . . 5 ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘(𝐹𝑘)))
162136, 161sylan 283 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘(𝐹𝑘)))
163 seqf1o.8 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
164160, 162, 1633eqtr4d 2236 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)‘𝑘) = (𝐻𝑘))
165134elexd 2773 . . . 4 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ V)
166 coexg 5202 . . . 4 (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹) ∈ V)
167165, 137, 166syl2anc 411 . . 3 (𝜑 → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹) ∈ V)
168 seqf1og.h . . 3 (𝜑𝐻𝑋)
1694, 164, 72, 167, 168seqfveqg 10539 . 2 (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , 𝐻)‘𝑁))
170 fveq2 5546 . . . 4 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
171 simpr 110 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
172170eleq1d 2262 . . . . 5 (𝑥 = 𝑘 → ((𝐺𝑥) ∈ 𝐶 ↔ (𝐺𝑘) ∈ 𝐶))
173172, 158, 171rspcdva 2869 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝐶)
174125, 170, 171, 173fvmptd3 5643 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘𝑘) = (𝐺𝑘))
175 seqf1og.g . . 3 (𝜑𝐺𝑊)
1764, 174, 72, 134, 175seqfveqg 10539 . 2 (𝜑 → (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
177154, 169, 1763eqtr3d 2234 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  wss 3153  ifcif 3557  {csn 3618   class class class wbr 4029  cmpt 4090  ccnv 4654  ccom 4659   Fn wfn 5241  wf 5242  1-1-ontowf1o 5245  cfv 5246  (class class class)co 5910  Fincfn 6785  1c1 7863   + caddc 7865   < clt 8044  cz 9307  cuz 9582  ...cfz 10064  seqcseq 10508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-er 6578  df-en 6786  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-inn 8973  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-seqfrec 10509
This theorem is referenced by:  gsumfzreidx  13396
  Copyright terms: Public domain W3C validator