![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsubdird | Structured version Visualization version GIF version |
Description: Distribution of division over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divsubdird | ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | divassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
5 | divsubdir 11013 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | |
6 | 1, 2, 3, 4, 5 | syl112anc 1494 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 (class class class)co 6878 ℂcc 10222 0cc0 10224 − cmin 10556 / cdiv 10976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 |
This theorem is referenced by: xov1plusxeqvd 12572 discr 13255 crre 14195 reccn2 14668 iseralt 14756 trireciplem 14932 geolim 14939 geolim2 14940 georeclim 14941 bpolydiflem 15121 bitsinv1lem 15498 fldivp1 15934 mul4sqlem 15990 lebnumii 23093 dyadovol 23701 mbfi1fseqlem6 23828 dvmptdiv 24078 dveflem 24083 dvsincos 24085 dvlip 24097 ulmdvlem1 24495 efeq1 24617 tanarg 24706 logcnlem4 24732 ang180lem1 24891 angpieqvdlem 24907 chordthmlem2 24912 chordthmlem4 24914 dcubic1lem 24922 dcubic2 24923 mcubic 24926 cubic2 24927 dquartlem1 24930 dquartlem2 24931 dquart 24932 2efiatan 24997 tanatan 24998 atantan 25002 dvatan 25014 atantayl 25016 atantayl2 25017 birthdaylem2 25031 jensenlem2 25066 logdiflbnd 25073 emcllem2 25075 lgamgulmlem2 25108 basellem8 25166 lgseisenlem1 25452 lgsquadlem2 25458 vmalogdivsum2 25579 vmalogdivsum 25580 2vmadivsumlem 25581 selberg3lem1 25598 selberg4lem1 25601 selberg4 25602 pntrmax 25605 pntrsumo1 25606 selberg3r 25610 selberg4r 25611 selberg34r 25612 pntrlog2bndlem4 25621 pntpbnd2 25628 pntibndlem2 25632 pntlemo 25648 pntlem3 25650 brbtwn2 26142 axsegconlem9 26162 axsegconlem10 26163 axpaschlem 26177 axcontlem8 26208 dya2icoseg 30855 itg2addnclem 33949 pellexlem2 38180 pellexlem6 38184 areaquad 38586 hashnzfzclim 39303 binomcxplemrat 39331 oddfl 40235 sumnnodd 40606 itgcoscmulx 40928 itgsincmulx 40933 stirlinglem1 41034 stirlinglem6 41039 dirkercncflem1 41063 fourierdlem26 41093 fourierdlem30 41097 fourierdlem65 41131 |
Copyright terms: Public domain | W3C validator |