Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divsubdird | Structured version Visualization version GIF version |
Description: Distribution of division over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divsubdird | ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | divassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
5 | divsubdir 11719 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | |
6 | 1, 2, 3, 4, 5 | syl112anc 1374 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Copyright terms: Public domain | W3C validator |