MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divnegd Structured version   Visualization version   GIF version

Theorem divnegd 11907
Description: Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divcld.3 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
divnegd (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))

Proof of Theorem divnegd
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divcld.3 . 2 (𝜑𝐵 ≠ 0)
4 divneg 11810 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cc 11001  0cc0 11003  -cneg 11342   / cdiv 11771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772
This theorem is referenced by:  qnegcl  12861  negmod0  13779  sinhval  16060  tanhbnd  16067  bitsfzo  16343  bitscmp  16346  pcneg  16783  dvrec  25884  dvsincos  25910  logtayl2  26596  logbrec  26717  cosangneg2d  26742  isosctrlem2  26754  angpieqvdlem  26763  dcubic2  26779  mcubic  26782  amgmlem  26925  basellem5  27020  pntpbnd1  27522  quad3d  32728  numdenneg  32792  divnumden2  32793  dvacos  37744  areacirc  37752  lcmineqlem12  42072  itgsincmulx  46011  dirkertrigeqlem3  46137  fourierdlem24  46168  fourierdlem26  46170  fourierdlem30  46174  fourierdlem39  46183  fourierdlem43  46187  fourierdlem44  46188  fourierdlem89  46232  fourierdlem91  46234  sqwvfourb  46266  etransclem47  46318  sharhght  46902  ceildivmod  47369  quad1  47650  requad1  47652  1subrec1sub  48736  eenglngeehlnmlem2  48769  line2  48783  itschlc0xyqsol  48798
  Copyright terms: Public domain W3C validator