MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odrngstr Structured version   Visualization version   GIF version

Theorem odrngstr 17347
Description: Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.)
Hypothesis
Ref Expression
odrngstr.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
Assertion
Ref Expression
odrngstr 𝑊 Struct ⟨1, 12⟩

Proof of Theorem odrngstr
StepHypRef Expression
1 odrngstr.w . 2 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
2 eqid 2732 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
32rngstr 17242 . . 3 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} Struct ⟨1, 3⟩
4 9nn 12309 . . . 4 9 ∈ ℕ
5 tsetndx 17296 . . . 4 (TopSet‘ndx) = 9
6 9lt10 12807 . . . 4 9 < 10
7 10nn 12692 . . . 4 10 ∈ ℕ
8 plendx 17310 . . . 4 (le‘ndx) = 10
9 1nn0 12487 . . . . 5 1 ∈ ℕ0
10 0nn0 12486 . . . . 5 0 ∈ ℕ0
11 2nn 12284 . . . . 5 2 ∈ ℕ
12 2pos 12314 . . . . 5 0 < 2
139, 10, 11, 12declt 12704 . . . 4 10 < 12
149, 11decnncl 12696 . . . 4 12 ∈ ℕ
15 dsndx 17329 . . . 4 (dist‘ndx) = 12
164, 5, 6, 7, 8, 13, 14, 15strle3 17092 . . 3 {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} Struct ⟨9, 12⟩
17 3lt9 12415 . . 3 3 < 9
183, 16, 17strleun 17089 . 2 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩}) Struct ⟨1, 12⟩
191, 18eqbrtri 5169 1 𝑊 Struct ⟨1, 12⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3946  {ctp 4632  cop 4634   class class class wbr 5148  cfv 6543  0cc0 11109  1c1 11110  2c2 12266  3c3 12267  9c9 12273  cdc 12676   Struct cstr 17078  ndxcnx 17125  Basecbs 17143  +gcplusg 17196  .rcmulr 17197  TopSetcts 17202  lecple 17203  distcds 17205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218
This theorem is referenced by:  odrngbas  17348  odrngplusg  17349  odrngmulr  17350  odrngtset  17351  odrngle  17352  odrngds  17353  xrsstr  20958
  Copyright terms: Public domain W3C validator