MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odrngstr Structured version   Visualization version   GIF version

Theorem odrngstr 17299
Description: Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.)
Hypothesis
Ref Expression
odrngstr.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
Assertion
Ref Expression
odrngstr 𝑊 Struct ⟨1, 12⟩

Proof of Theorem odrngstr
StepHypRef Expression
1 odrngstr.w . 2 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
2 eqid 2730 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
32rngstr 17194 . . 3 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} Struct ⟨1, 3⟩
4 9nn 12215 . . . 4 9 ∈ ℕ
5 tsetndx 17248 . . . 4 (TopSet‘ndx) = 9
6 9lt10 12711 . . . 4 9 < 10
7 10nn 12596 . . . 4 10 ∈ ℕ
8 plendx 17262 . . . 4 (le‘ndx) = 10
9 1nn0 12389 . . . . 5 1 ∈ ℕ0
10 0nn0 12388 . . . . 5 0 ∈ ℕ0
11 2nn 12190 . . . . 5 2 ∈ ℕ
12 2pos 12220 . . . . 5 0 < 2
139, 10, 11, 12declt 12608 . . . 4 10 < 12
149, 11decnncl 12600 . . . 4 12 ∈ ℕ
15 dsndx 17281 . . . 4 (dist‘ndx) = 12
164, 5, 6, 7, 8, 13, 14, 15strle3 17063 . . 3 {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} Struct ⟨9, 12⟩
17 3lt9 12316 . . 3 3 < 9
183, 16, 17strleun 17060 . 2 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩}) Struct ⟨1, 12⟩
191, 18eqbrtri 5110 1 𝑊 Struct ⟨1, 12⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3898  {ctp 4578  cop 4580   class class class wbr 5089  cfv 6477  0cc0 10998  1c1 10999  2c2 12172  3c3 12173  9c9 12179  cdc 12580   Struct cstr 17049  ndxcnx 17096  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  TopSetcts 17159  lecple 17160  distcds 17162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-tset 17172  df-ple 17173  df-ds 17175
This theorem is referenced by:  odrngbas  17300  odrngplusg  17301  odrngmulr  17302  odrngtset  17303  odrngle  17304  odrngds  17305  xrsstr  21313
  Copyright terms: Public domain W3C validator