MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge02d Structured version   Visualization version   GIF version

Theorem addge02d 11024
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
addge02d (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐵 + 𝐴)))

Proof of Theorem addge02d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge02 10946 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵𝐴 ≤ (𝐵 + 𝐴)))
41, 2, 3syl2anc 576 1 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐵 + 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2050   class class class wbr 4923  (class class class)co 6970  cr 10328  0cc0 10329   + caddc 10332  cle 10469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474
This theorem is referenced by:  uzsubsubfz  12739  climcndslem2  15059  cosbnd  15388  sadcaddlem  15660  isabvd  19307  ovolicopnf  23822  ioombl1lem4  23859  mbfi1fseqlem6  24018  dvfsumlem4  24323  dvfsum2  24328  cxpaddle  25028  2sqmod  25708  pntpbnd1  25858  padicabv  25902  wwlksnextproplem2  27405  wwlksnextproplem2OLD  27406  wwlksnextproplem3  27407  wwlksnextproplem3OLD  27408  unblimceq0lem  33365  itg2addnc  34387  pell1qrge1  38863  wallispilem4  41784  fourierdlem30  41853  etransclem44  41994
  Copyright terms: Public domain W3C validator