| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalt2lem2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for itcovalt2lem2 48681. (Contributed by AV, 6-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalt2lem2lem1 | ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12412 | . . . . 5 ⊢ (𝐶 ∈ ℕ0 → 𝐶 ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 3 | 2 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 4 | simpr 484 | . . . . 5 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0) |
| 7 | 4, 6 | nn0addcld 12468 | . . . 4 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0) |
| 8 | 7 | nn0red 12465 | . . 3 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℝ) |
| 9 | nnnn0 12410 | . . . . . 6 ⊢ (𝑌 ∈ ℕ → 𝑌 ∈ ℕ0) | |
| 10 | 9 | ad2antrr 726 | . . . . 5 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℕ0) |
| 11 | 7, 10 | nn0mulcld 12469 | . . . 4 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · 𝑌) ∈ ℕ0) |
| 12 | 11 | nn0red 12465 | . . 3 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · 𝑌) ∈ ℝ) |
| 13 | nn0ge0 12428 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁) |
| 15 | 6 | nn0red 12465 | . . . . 5 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 16 | 4 | nn0red 12465 | . . . . 5 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 17 | 15, 16 | addge02d 11728 | . . . 4 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (0 ≤ 𝑁 ↔ 𝐶 ≤ (𝑁 + 𝐶))) |
| 18 | 14, 17 | mpbid 232 | . . 3 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ≤ (𝑁 + 𝐶)) |
| 19 | simpll 766 | . . . . 5 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℕ) | |
| 20 | 19 | nnred 12162 | . . . 4 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℝ) |
| 21 | 7 | nn0ge0d 12467 | . . . 4 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝑁 + 𝐶)) |
| 22 | nnge1 12175 | . . . . 5 ⊢ (𝑌 ∈ ℕ → 1 ≤ 𝑌) | |
| 23 | 22 | ad2antrr 726 | . . . 4 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑌) |
| 24 | 8, 20, 21, 23 | lemulge11d 12081 | . . 3 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ≤ ((𝑁 + 𝐶) · 𝑌)) |
| 25 | 3, 8, 12, 18, 24 | letrd 11292 | . 2 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ≤ ((𝑁 + 𝐶) · 𝑌)) |
| 26 | nn0sub 12453 | . . 3 ⊢ ((𝐶 ∈ ℕ0 ∧ ((𝑁 + 𝐶) · 𝑌) ∈ ℕ0) → (𝐶 ≤ ((𝑁 + 𝐶) · 𝑌) ↔ (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0)) | |
| 27 | 6, 11, 26 | syl2anc 584 | . 2 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐶 ≤ ((𝑁 + 𝐶) · 𝑌) ↔ (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0)) |
| 28 | 25, 27 | mpbid 232 | 1 ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 − cmin 11366 ℕcn 12147 ℕ0cn0 12403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 |
| This theorem is referenced by: itcovalt2lem2 48681 |
| Copyright terms: Public domain | W3C validator |