Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2lem1 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2lem1 48522
Description: Lemma 1 for itcovalt2lem2 48525. (Contributed by AV, 6-May-2024.)
Assertion
Ref Expression
itcovalt2lem2lem1 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0)

Proof of Theorem itcovalt2lem2lem1
StepHypRef Expression
1 nn0re 12532 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℝ)
21adantl 481 . . . 4 ((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℝ)
32adantr 480 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℝ)
4 simpr 484 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
5 simpr 484 . . . . . 6 ((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
65adantr 480 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0)
74, 6nn0addcld 12588 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0)
87nn0red 12585 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℝ)
9 nnnn0 12530 . . . . . 6 (𝑌 ∈ ℕ → 𝑌 ∈ ℕ0)
109ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℕ0)
117, 10nn0mulcld 12589 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · 𝑌) ∈ ℕ0)
1211nn0red 12585 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · 𝑌) ∈ ℝ)
13 nn0ge0 12548 . . . . 5 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1413adantl 481 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
156nn0red 12585 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℝ)
164nn0red 12585 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
1715, 16addge02d 11849 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (0 ≤ 𝑁𝐶 ≤ (𝑁 + 𝐶)))
1814, 17mpbid 232 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ≤ (𝑁 + 𝐶))
19 simpll 767 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℕ)
2019nnred 12278 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℝ)
217nn0ge0d 12587 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝑁 + 𝐶))
22 nnge1 12291 . . . . 5 (𝑌 ∈ ℕ → 1 ≤ 𝑌)
2322ad2antrr 726 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑌)
248, 20, 21, 23lemulge11d 12202 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ≤ ((𝑁 + 𝐶) · 𝑌))
253, 8, 12, 18, 24letrd 11415 . 2 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ≤ ((𝑁 + 𝐶) · 𝑌))
26 nn0sub 12573 . . 3 ((𝐶 ∈ ℕ0 ∧ ((𝑁 + 𝐶) · 𝑌) ∈ ℕ0) → (𝐶 ≤ ((𝑁 + 𝐶) · 𝑌) ↔ (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0))
276, 11, 26syl2anc 584 . 2 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐶 ≤ ((𝑁 + 𝐶) · 𝑌) ↔ (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0))
2825, 27mpbid 232 1 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2105   class class class wbr 5147  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cle 11293  cmin 11489  cn 12263  0cn0 12523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524
This theorem is referenced by:  itcovalt2lem2  48525
  Copyright terms: Public domain W3C validator