Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2lem1 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2lem1 48678
Description: Lemma 1 for itcovalt2lem2 48681. (Contributed by AV, 6-May-2024.)
Assertion
Ref Expression
itcovalt2lem2lem1 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0)

Proof of Theorem itcovalt2lem2lem1
StepHypRef Expression
1 nn0re 12412 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℝ)
21adantl 481 . . . 4 ((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℝ)
32adantr 480 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℝ)
4 simpr 484 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
5 simpr 484 . . . . . 6 ((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
65adantr 480 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0)
74, 6nn0addcld 12468 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0)
87nn0red 12465 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℝ)
9 nnnn0 12410 . . . . . 6 (𝑌 ∈ ℕ → 𝑌 ∈ ℕ0)
109ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℕ0)
117, 10nn0mulcld 12469 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · 𝑌) ∈ ℕ0)
1211nn0red 12465 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · 𝑌) ∈ ℝ)
13 nn0ge0 12428 . . . . 5 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1413adantl 481 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
156nn0red 12465 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℝ)
164nn0red 12465 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
1715, 16addge02d 11728 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (0 ≤ 𝑁𝐶 ≤ (𝑁 + 𝐶)))
1814, 17mpbid 232 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ≤ (𝑁 + 𝐶))
19 simpll 766 . . . . 5 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℕ)
2019nnred 12162 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑌 ∈ ℝ)
217nn0ge0d 12467 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝑁 + 𝐶))
22 nnge1 12175 . . . . 5 (𝑌 ∈ ℕ → 1 ≤ 𝑌)
2322ad2antrr 726 . . . 4 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑌)
248, 20, 21, 23lemulge11d 12081 . . 3 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ≤ ((𝑁 + 𝐶) · 𝑌))
253, 8, 12, 18, 24letrd 11292 . 2 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ≤ ((𝑁 + 𝐶) · 𝑌))
26 nn0sub 12453 . . 3 ((𝐶 ∈ ℕ0 ∧ ((𝑁 + 𝐶) · 𝑌) ∈ ℕ0) → (𝐶 ≤ ((𝑁 + 𝐶) · 𝑌) ↔ (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0))
276, 11, 26syl2anc 584 . 2 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐶 ≤ ((𝑁 + 𝐶) · 𝑌) ↔ (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0))
2825, 27mpbid 232 1 (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11366  cn 12147  0cn0 12403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404
This theorem is referenced by:  itcovalt2lem2  48681
  Copyright terms: Public domain W3C validator