| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnncan2d | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| nnncan2d | ⊢ (𝜑 → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | nnncan2 11393 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 − cmin 11339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 |
| This theorem is referenced by: bitsinv1lem 16347 prmdiveq 16692 chnrev 18528 cmvth 25917 cmvthOLD 25918 dvfsumlem2 25955 dvfsumlem2OLD 25956 abelthlem9 26372 ang180 26746 isosctr 26753 angpieqvdlem 26760 lgamcvg2 26987 bposlem9 27225 vmadivsum 27415 rplogsum 27460 vmalogdivsum2 27471 vmalogdivsum 27472 2vmadivsumlem 27473 selberg4lem1 27493 pntrsumo1 27498 selbergr 27501 selberg3r 27502 brbtwn2 28878 axpaschlem 28913 axcontlem8 28944 pellexlem6 42867 cncfshift 45912 cncfperiod 45917 fourierdlem41 46186 fourierdlem109 46253 fourierdlem111 46255 fouriersw 46269 sigaradd 46904 affinecomb2 48735 |
| Copyright terms: Public domain | W3C validator |