Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setsmsbasOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of setsmsbas 23733 as of 12-Nov-2024. The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
Ref | Expression |
---|---|
setsmsbasOLD | ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17012 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
2 | 1re 11080 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1lt9 12284 | . . . . 5 ⊢ 1 < 9 | |
4 | 2, 3 | ltneii 11193 | . . . 4 ⊢ 1 ≠ 9 |
5 | basendx 17018 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
6 | tsetndx 17159 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
7 | 5, 6 | neeq12i 3008 | . . . 4 ⊢ ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9) |
8 | 4, 7 | mpbir 230 | . . 3 ⊢ (Base‘ndx) ≠ (TopSet‘ndx) |
9 | 1, 8 | setsnid 17007 | . 2 ⊢ (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
10 | setsms.x | . 2 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
11 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
12 | 11 | fveq2d 6833 | . 2 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
13 | 9, 10, 12 | 3eqtr4a 2803 | 1 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2941 〈cop 4583 × cxp 5622 ↾ cres 5626 ‘cfv 6483 (class class class)co 7341 1c1 10977 9c9 12140 sSet csts 16961 ndxcnx 16991 Basecbs 17009 TopSetcts 17065 distcds 17068 MetOpencmopn 20692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-tset 17078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |