![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trkgstr | Structured version Visualization version GIF version |
Description: Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
Ref | Expression |
---|---|
trkgstr.w | ⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} |
Ref | Expression |
---|---|
trkgstr | ⊢ 𝑊 Struct 〈1, ;16〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trkgstr.w | . 2 ⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} | |
2 | 1nn 12245 | . . 3 ⊢ 1 ∈ ℕ | |
3 | basendx 17180 | . . 3 ⊢ (Base‘ndx) = 1 | |
4 | 2nn0 12511 | . . . 4 ⊢ 2 ∈ ℕ0 | |
5 | 1nn0 12510 | . . . 4 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12838 | . . . 4 ⊢ 1 < ;10 | |
7 | 2, 4, 5, 6 | declti 12737 | . . 3 ⊢ 1 < ;12 |
8 | 2nn 12307 | . . . 4 ⊢ 2 ∈ ℕ | |
9 | 5, 8 | decnncl 12719 | . . 3 ⊢ ;12 ∈ ℕ |
10 | dsndx 17357 | . . 3 ⊢ (dist‘ndx) = ;12 | |
11 | 6nn 12323 | . . . 4 ⊢ 6 ∈ ℕ | |
12 | 2lt6 12418 | . . . 4 ⊢ 2 < 6 | |
13 | 5, 4, 11, 12 | declt 12727 | . . 3 ⊢ ;12 < ;16 |
14 | 5, 11 | decnncl 12719 | . . 3 ⊢ ;16 ∈ ℕ |
15 | itvndx 28228 | . . 3 ⊢ (Itv‘ndx) = ;16 | |
16 | 2, 3, 7, 9, 10, 13, 14, 15 | strle3 17120 | . 2 ⊢ {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} Struct 〈1, ;16〉 |
17 | 1, 16 | eqbrtri 5163 | 1 ⊢ 𝑊 Struct 〈1, ;16〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 {ctp 4628 〈cop 4630 class class class wbr 5142 ‘cfv 6542 1c1 11131 2c2 12289 6c6 12293 ;cdc 12699 Struct cstr 17106 ndxcnx 17153 Basecbs 17171 distcds 17233 Itvcitv 28224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-slot 17142 df-ndx 17154 df-base 17172 df-ds 17246 df-itv 28226 |
This theorem is referenced by: trkgbas 28236 trkgdist 28237 trkgitv 28238 |
Copyright terms: Public domain | W3C validator |