MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2strstr Structured version   Visualization version   GIF version

Theorem 2strstr 17209
Description: A constructed two-slot structure. Depending on hard-coded indices. Use 2strstr1 17212 instead. (Contributed by Mario Carneiro, 29-Aug-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2strstr 𝐺 Struct ⟨1, 𝑁

Proof of Theorem 2strstr
StepHypRef Expression
1 2str.g . 2 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2 1nn 12261 . . 3 1 ∈ ℕ
3 basendx 17196 . . 3 (Base‘ndx) = 1
4 2str.l . . 3 1 < 𝑁
5 2str.n . . 3 𝑁 ∈ ℕ
6 2str.e . . . 4 𝐸 = Slot 𝑁
76, 5ndxarg 17172 . . 3 (𝐸‘ndx) = 𝑁
82, 3, 4, 5, 7strle2 17135 . 2 {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} Struct ⟨1, 𝑁
91, 8eqbrtri 5173 1 𝐺 Struct ⟨1, 𝑁
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {cpr 4634  cop 4638   class class class wbr 5152  cfv 6553  1c1 11147   < clt 11286  cn 12250   Struct cstr 17122  Slot cslot 17157  ndxcnx 17169  Basecbs 17187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188
This theorem is referenced by:  2strbas  17210  2strop  17211  2strstr1OLD  17213  grpstr  17272
  Copyright terms: Public domain W3C validator