![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardalephex | Structured version Visualization version GIF version |
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
Ref | Expression |
---|---|
cardalephex | ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴) | |
2 | cardaleph 10133 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
3 | 2 | sseq2d 4029 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))) |
4 | alephgeom 10126 | . . . . . 6 ⊢ (∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
5 | 3, 4 | bitr4di 289 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)) |
6 | 1, 5 | mpbid 232 | . . . 4 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On) |
7 | fveq2 6911 | . . . . 5 ⊢ (𝑥 = ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
8 | 7 | rspceeqv 3646 | . . . 4 ⊢ ((∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
9 | 6, 2, 8 | syl2anc 584 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
10 | 9 | ex 412 | . 2 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
11 | alephcard 10114 | . . . 4 ⊢ (card‘(ℵ‘𝑥)) = (ℵ‘𝑥) | |
12 | fveq2 6911 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥))) | |
13 | id 22 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥)) | |
14 | 11, 12, 13 | 3eqtr4a 2802 | . . 3 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
15 | 14 | rexlimivw 3150 | . 2 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
16 | 10, 15 | impbid1 225 | 1 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∃wrex 3069 {crab 3434 ⊆ wss 3964 ∩ cint 4952 Oncon0 6389 ‘cfv 6566 ωcom 7891 cardccrd 9979 ℵcale 9980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-oi 9554 df-har 9601 df-card 9983 df-aleph 9984 |
This theorem is referenced by: infenaleph 10135 isinfcard 10136 alephfp 10152 alephval3 10154 dfac12k 10192 alephval2 10616 winalim2 10740 minregex 43538 |
Copyright terms: Public domain | W3C validator |