MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardalephex Structured version   Visualization version   GIF version

Theorem cardalephex 10067
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.)
Assertion
Ref Expression
cardalephex (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardalephex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴)
2 cardaleph 10066 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
32sseq2d 4010 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})))
4 alephgeom 10059 . . . . . 6 ( {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
53, 4bitr4di 288 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On))
61, 5mpbid 231 . . . 4 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)
7 fveq2 6878 . . . . 5 (𝑥 = {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
87rspceeqv 3629 . . . 4 (( {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
96, 2, 8syl2anc 584 . . 3 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
109ex 413 . 2 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
11 alephcard 10047 . . . 4 (card‘(ℵ‘𝑥)) = (ℵ‘𝑥)
12 fveq2 6878 . . . 4 (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥)))
13 id 22 . . . 4 (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥))
1411, 12, 133eqtr4a 2797 . . 3 (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴)
1514rexlimivw 3150 . 2 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴)
1610, 15impbid1 224 1 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3069  {crab 3431  wss 3944   cint 4943  Oncon0 6353  cfv 6532  ωcom 7838  cardccrd 9912  cale 9913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-oi 9487  df-har 9534  df-card 9916  df-aleph 9917
This theorem is referenced by:  infenaleph  10068  isinfcard  10069  alephfp  10085  alephval3  10087  dfac12k  10124  alephval2  10549  winalim2  10673  minregex  42056
  Copyright terms: Public domain W3C validator