MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardalephex Structured version   Visualization version   GIF version

Theorem cardalephex 10134
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.)
Assertion
Ref Expression
cardalephex (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardalephex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴)
2 cardaleph 10133 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
32sseq2d 4029 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})))
4 alephgeom 10126 . . . . . 6 ( {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
53, 4bitr4di 289 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On))
61, 5mpbid 232 . . . 4 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)
7 fveq2 6911 . . . . 5 (𝑥 = {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
87rspceeqv 3646 . . . 4 (( {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
96, 2, 8syl2anc 584 . . 3 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
109ex 412 . 2 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
11 alephcard 10114 . . . 4 (card‘(ℵ‘𝑥)) = (ℵ‘𝑥)
12 fveq2 6911 . . . 4 (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥)))
13 id 22 . . . 4 (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥))
1411, 12, 133eqtr4a 2802 . . 3 (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴)
1514rexlimivw 3150 . 2 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴)
1610, 15impbid1 225 1 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1538  wcel 2107  wrex 3069  {crab 3434  wss 3964   cint 4952  Oncon0 6389  cfv 6566  ωcom 7891  cardccrd 9979  cale 9980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-oi 9554  df-har 9601  df-card 9983  df-aleph 9984
This theorem is referenced by:  infenaleph  10135  isinfcard  10136  alephfp  10152  alephval3  10154  dfac12k  10192  alephval2  10616  winalim2  10740  minregex  43538
  Copyright terms: Public domain W3C validator