Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardalephex | Structured version Visualization version GIF version |
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
Ref | Expression |
---|---|
cardalephex | ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴) | |
2 | cardaleph 9845 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
3 | 2 | sseq2d 3953 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))) |
4 | alephgeom 9838 | . . . . . 6 ⊢ (∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
5 | 3, 4 | bitr4di 289 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)) |
6 | 1, 5 | mpbid 231 | . . . 4 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On) |
7 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
8 | 7 | rspceeqv 3575 | . . . 4 ⊢ ((∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
9 | 6, 2, 8 | syl2anc 584 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
10 | 9 | ex 413 | . 2 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
11 | alephcard 9826 | . . . 4 ⊢ (card‘(ℵ‘𝑥)) = (ℵ‘𝑥) | |
12 | fveq2 6774 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥))) | |
13 | id 22 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥)) | |
14 | 11, 12, 13 | 3eqtr4a 2804 | . . 3 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
15 | 14 | rexlimivw 3211 | . 2 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
16 | 10, 15 | impbid1 224 | 1 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 ⊆ wss 3887 ∩ cint 4879 Oncon0 6266 ‘cfv 6433 ωcom 7712 cardccrd 9693 ℵcale 9694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-card 9697 df-aleph 9698 |
This theorem is referenced by: infenaleph 9847 isinfcard 9848 alephfp 9864 alephval3 9866 dfac12k 9903 alephval2 10328 winalim2 10452 minregex 41141 |
Copyright terms: Public domain | W3C validator |