MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardalephex Structured version   Visualization version   GIF version

Theorem cardalephex 9510
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.)
Assertion
Ref Expression
cardalephex (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardalephex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴)
2 cardaleph 9509 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
32sseq2d 4003 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})))
4 alephgeom 9502 . . . . . 6 ( {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
53, 4syl6bbr 290 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On))
61, 5mpbid 233 . . . 4 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)
7 fveq2 6669 . . . . 5 (𝑥 = {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))
87rspceeqv 3642 . . . 4 (( {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
96, 2, 8syl2anc 584 . . 3 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
109ex 413 . 2 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
11 alephcard 9490 . . . 4 (card‘(ℵ‘𝑥)) = (ℵ‘𝑥)
12 fveq2 6669 . . . 4 (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥)))
13 id 22 . . . 4 (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥))
1411, 12, 133eqtr4a 2887 . . 3 (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴)
1514rexlimivw 3287 . 2 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴)
1610, 15impbid1 226 1 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3144  {crab 3147  wss 3940   cint 4874  Oncon0 6190  cfv 6354  ωcom 7573  cardccrd 9358  cale 9359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-oi 8968  df-har 9016  df-card 9362  df-aleph 9363
This theorem is referenced by:  infenaleph  9511  isinfcard  9512  alephfp  9528  alephval3  9530  dfac12k  9567  alephval2  9988  winalim2  10112
  Copyright terms: Public domain W3C validator