![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardalephex | Structured version Visualization version GIF version |
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
Ref | Expression |
---|---|
cardalephex | ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴) | |
2 | cardaleph 10066 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
3 | 2 | sseq2d 4010 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))) |
4 | alephgeom 10059 | . . . . . 6 ⊢ (∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
5 | 3, 4 | bitr4di 288 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)) |
6 | 1, 5 | mpbid 231 | . . . 4 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On) |
7 | fveq2 6878 | . . . . 5 ⊢ (𝑥 = ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
8 | 7 | rspceeqv 3629 | . . . 4 ⊢ ((∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
9 | 6, 2, 8 | syl2anc 584 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
10 | 9 | ex 413 | . 2 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
11 | alephcard 10047 | . . . 4 ⊢ (card‘(ℵ‘𝑥)) = (ℵ‘𝑥) | |
12 | fveq2 6878 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥))) | |
13 | id 22 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥)) | |
14 | 11, 12, 13 | 3eqtr4a 2797 | . . 3 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
15 | 14 | rexlimivw 3150 | . 2 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
16 | 10, 15 | impbid1 224 | 1 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 {crab 3431 ⊆ wss 3944 ∩ cint 4943 Oncon0 6353 ‘cfv 6532 ωcom 7838 cardccrd 9912 ℵcale 9913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-inf2 9618 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-oi 9487 df-har 9534 df-card 9916 df-aleph 9917 |
This theorem is referenced by: infenaleph 10068 isinfcard 10069 alephfp 10085 alephval3 10087 dfac12k 10124 alephval2 10549 winalim2 10673 minregex 42056 |
Copyright terms: Public domain | W3C validator |