![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardalephex | Structured version Visualization version GIF version |
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
Ref | Expression |
---|---|
cardalephex | ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴) | |
2 | cardaleph 9198 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
3 | 2 | sseq2d 3829 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))) |
4 | alephgeom 9191 | . . . . . 6 ⊢ (∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
5 | 3, 4 | syl6bbr 281 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)) |
6 | 1, 5 | mpbid 224 | . . . 4 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On) |
7 | fveq2 6411 | . . . . 5 ⊢ (𝑥 = ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
8 | 7 | rspceeqv 3515 | . . . 4 ⊢ ((∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
9 | 6, 2, 8 | syl2anc 580 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
10 | 9 | ex 402 | . 2 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
11 | alephcard 9179 | . . . 4 ⊢ (card‘(ℵ‘𝑥)) = (ℵ‘𝑥) | |
12 | fveq2 6411 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥))) | |
13 | id 22 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥)) | |
14 | 11, 12, 13 | 3eqtr4a 2859 | . . 3 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
15 | 14 | rexlimivw 3210 | . 2 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
16 | 10, 15 | impbid1 217 | 1 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 {crab 3093 ⊆ wss 3769 ∩ cint 4667 Oncon0 5941 ‘cfv 6101 ωcom 7299 cardccrd 9047 ℵcale 9048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-oi 8657 df-har 8705 df-card 9051 df-aleph 9052 |
This theorem is referenced by: infenaleph 9200 isinfcard 9201 alephfp 9217 alephval3 9219 dfac12k 9257 alephval2 9682 winalim2 9806 |
Copyright terms: Public domain | W3C validator |